亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We derive general bounds on the probability that the empirical first-passage time $\overline{\tau}_n\equiv \sum_{i=1}^n\tau_i/n$ of a reversible ergodic Markov process inferred from a sample of $n$ independent realizations deviates from the true mean first-passage time by more than any given amount in either direction. We construct non-asymptotic confidence intervals that hold in the elusive small-sample regime and thus fill the gap between asymptotic methods and the Bayesian approach that is known to be sensitive to prior belief and tends to underestimate uncertainty in the small-sample setting. We prove sharp bounds on extreme first-passage times that control uncertainty even in cases where the mean alone does not sufficiently characterize the statistics. Our concentration-of-measure-based results allow for model-free error control and reliable error estimation in kinetic inference, and are thus important for the analysis of experimental and simulation data in the presence of limited sampling.

相關內容

In this paper, we consider the counting function $E_P(y) = |P_{y} \cap Z^{n_x}|$ for a parametric polyhedron $P_{y} = \{x \in R^{n_x} \colon A x \leq b + B y\}$, where $y \in R^{n_y}$. We give a new representation of $E_P(y)$, called a \emph{piece-wise step-polynomial with periodic coefficients}, which is a generalization of piece-wise step-polynomials and integer/rational Ehrhart's quasi-polynomials. It gives the fastest way to calculate $E_P(y)$ in certain scenarios. The most important cases are the following: 1) We show that, for the parametric polyhedron $P_y$ defined by a standard-form system $A x = y,\, x \geq 0$ with a fixed number of equalities, the function $E_P(y)$ can be represented by a polynomial-time computable function. In turn, such a representation of $E_P(y)$ can be constructed by an $poly\bigl(n, \|A\|_{\infty}\bigr)$-time algorithm; 2) Assuming again that the number of equalities is fixed, we show that integer/rational Ehrhart's quasi-polynomials of a polytope can be computed by FPT-algorithms, parameterized by sub-determinants of $A$ or its elements; 3) Our representation of $E_P$ is more efficient than other known approaches, if $A$ has bounded elements, especially if it is sparse in addition. Additionally, we provide a discussion about possible applications in the area of compiler optimization. In some "natural" assumptions on a program code, our approach has the fastest complexity bounds.

The Weisfeiler-Leman (WL) dimension of a graph parameter $f$ is the minimum $k$ such that, if $G_1$ and $G_2$ are indistinguishable by the $k$-dimensional WL-algorithm then $f(G_1)=f(G_2)$. The WL-dimension of $f$ is $\infty$ if no such $k$ exists. We study the WL-dimension of graph parameters characterised by the number of answers from a fixed conjunctive query to the graph. Given a conjunctive query $\varphi$, we quantify the WL-dimension of the function that maps every graph $G$ to the number of answers of $\varphi$ in $G$. The works of Dvor\'ak (J. Graph Theory 2010), Dell, Grohe, and Rattan (ICALP 2018), and Neuen (ArXiv 2023) have answered this question for full conjunctive queries, which are conjunctive queries without existentially quantified variables. For such queries $\varphi$, the WL-dimension is equal to the treewidth of the Gaifman graph of $\varphi$. In this work, we give a characterisation that applies to all conjunctive qureies. Given any conjunctive query $\varphi$, we prove that its WL-dimension is equal to the semantic extension width $\mathsf{sew}(\varphi)$, a novel width measure that can be thought of as a combination of the treewidth of $\varphi$ and its quantified star size, an invariant introduced by Durand and Mengel (ICDT 2013) describing how the existentially quantified variables of $\varphi$ are connected with the free variables. Using the recently established equivalence between the WL-algorithm and higher-order Graph Neural Networks (GNNs) due to Morris et al. (AAAI 2019), we obtain as a consequence that the function counting answers to a conjunctive query $\varphi$ cannot be computed by GNNs of order smaller than $\mathsf{sew}(\varphi)$.

Machine Unlearning (MU) algorithms have become increasingly critical due to the imperative adherence to data privacy regulations. The primary objective of MU is to erase the influence of specific data samples on a given model without the need to retrain it from scratch. Accordingly, existing methods focus on maximizing user privacy protection. However, there are different degrees of privacy regulations for each real-world web-based application. Exploring the full spectrum of trade-offs between privacy, model utility, and runtime efficiency is critical for practical unlearning scenarios. Furthermore, designing the MU algorithm with simple control of the aforementioned trade-off is desirable but challenging due to the inherent complex interaction. To address the challenges, we present Controllable Machine Unlearning (ConMU), a novel framework designed to facilitate the calibration of MU. The ConMU framework contains three integral modules: an important data selection module that reconciles the runtime efficiency and model generalization, a progressive Gaussian mechanism module that balances privacy and model generalization, and an unlearning proxy that controls the trade-offs between privacy and runtime efficiency. Comprehensive experiments on various benchmark datasets have demonstrated the robust adaptability of our control mechanism and its superiority over established unlearning methods. ConMU explores the full spectrum of the Privacy-Utility-Efficiency trade-off and allows practitioners to account for different real-world regulations. Source code available at: //github.com/guangyaodou/ConMU.

For a set of points in $\mathbb{R}^d$, the Euclidean $k$-means problems consists of finding $k$ centers such that the sum of distances squared from each data point to its closest center is minimized. Coresets are one the main tools developed recently to solve this problem in a big data context. They allow to compress the initial dataset while preserving its structure: running any algorithm on the coreset provides a guarantee almost equivalent to running it on the full data. In this work, we study coresets in a fully-dynamic setting: points are added and deleted with the goal to efficiently maintain a coreset with which a k-means solution can be computed. Based on an algorithm from Henzinger and Kale [ESA'20], we present an efficient and practical implementation of a fully dynamic coreset algorithm, that improves the running time by up to a factor of 20 compared to our non-optimized implementation of the algorithm by Henzinger and Kale, without sacrificing more than 7% on the quality of the k-means solution.

Recently, Arjevani et al. [1] established a lower bound of iteration complexity for the first-order optimization under an $L$-smooth condition and a bounded noise variance assumption. However, a thorough review of existing literature on Adam's convergence reveals a noticeable gap: none of them meet the above lower bound. In this paper, we close the gap by deriving a new convergence guarantee of Adam, with only an $L$-smooth condition and a bounded noise variance assumption. Our results remain valid across a broad spectrum of hyperparameters. Especially with properly chosen hyperparameters, we derive an upper bound of the iteration complexity of Adam and show that it meets the lower bound for first-order optimizers. To the best of our knowledge, this is the first to establish such a tight upper bound for Adam's convergence. Our proof utilizes novel techniques to handle the entanglement between momentum and adaptive learning rate and to convert the first-order term in the Descent Lemma to the gradient norm, which may be of independent interest.

The two-hand interaction is one of the most challenging signals to analyze due to the self-similarity, complicated articulations, and occlusions of hands. Although several datasets have been proposed for the two-hand interaction analysis, all of them do not achieve 1) diverse and realistic image appearances and 2) diverse and large-scale groundtruth (GT) 3D poses at the same time. In this work, we propose Re:InterHand, a dataset of relighted 3D interacting hands that achieve the two goals. To this end, we employ a state-of-the-art hand relighting network with our accurately tracked two-hand 3D poses. We compare our Re:InterHand with existing 3D interacting hands datasets and show the benefit of it. Our Re:InterHand is available in //mks0601.github.io/ReInterHand/.

The modular subset sum problem consists of deciding, given a modulus $m$, a multiset $S$ of $n$ integers in $0..m-1$, and a target integer $t$, whether there exists a subset of $S$ with elements summing to $t \mod m $, and to report such a set if it exists. We give a simple $O(m \log m)$-time with high probability (w.h.p.) algorithm for the modular subset sum problem. This builds on and improves on a previous $O(m \log^7 m)$ w.h.p. algorithm from Axiotis, Backurs, Jin, Tzamos, and Wu (SODA 19). Our method utilizes the ADT of the dynamic strings structure of Gawrychowski et al. (SODA~18). However, as this structure is rather complicated we present a much simpler alternative which we call the Data Dependent Tree. As an application, we consider the computational version of a fundamental theorem in zero-sum Ramsey theory. The Erd\H{o}s-Ginzburg-Ziv Theorem states that a multiset of $2n - 1$ integers always contains a subset of cardinality exactly $n$ whose values sum to a multiple of $n$. We give an algorithm for finding such a subset in time $O(n \log n)$ w.h.p. which improves on an $O(n^2)$ algorithm due to Del Lungo, Marini, and Mori (Disc. Math. 09).

Learning graphical conditional independence structures is an important machine learning problem and a cornerstone of causal discovery. However, the accuracy and execution time of learning algorithms generally struggle to scale to problems with hundreds of highly connected variables -- for instance, recovering brain networks from fMRI data. We introduce the best order score search (BOSS) and grow-shrink trees (GSTs) for learning directed acyclic graphs (DAGs) in this paradigm. BOSS greedily searches over permutations of variables, using GSTs to construct and score DAGs from permutations. GSTs efficiently cache scores to eliminate redundant calculations. BOSS achieves state-of-the-art performance in accuracy and execution time, comparing favorably to a variety of combinatorial and gradient-based learning algorithms under a broad range of conditions. To demonstrate its practicality, we apply BOSS to two sets of resting-state fMRI data: simulated data with pseudo-empirical noise distributions derived from randomized empirical fMRI cortical signals and clinical data from 3T fMRI scans processed into cortical parcels. BOSS is available for use within the TETRAD project which includes Python and R wrappers.

High sample complexity has long been a challenge for RL. On the other hand, humans learn to perform tasks not only from interaction or demonstrations, but also by reading unstructured text documents, e.g., instruction manuals. Instruction manuals and wiki pages are among the most abundant data that could inform agents of valuable features and policies or task-specific environmental dynamics and reward structures. Therefore, we hypothesize that the ability to utilize human-written instruction manuals to assist learning policies for specific tasks should lead to a more efficient and better-performing agent. We propose the Read and Reward framework. Read and Reward speeds up RL algorithms on Atari games by reading manuals released by the Atari game developers. Our framework consists of a QA Extraction module that extracts and summarizes relevant information from the manual and a Reasoning module that evaluates object-agent interactions based on information from the manual. An auxiliary reward is then provided to a standard A2C RL agent, when interaction is detected. Experimentally, various RL algorithms obtain significant improvement in performance and training speed when assisted by our design.

We study the sensitivity of infinite-dimensional Bayesian linear inverse problems governed by partial differential equations (PDEs) with respect to modeling uncertainties. In particular, we consider derivative-based sensitivity analysis of the information gain, as measured by the Kullback-Leibler divergence from the posterior to the prior distribution. To facilitate this, we develop a fast and accurate method for computing derivatives of the information gain with respect to auxiliary model parameters. Our approach combines low-rank approximations, adjoint-based eigenvalue sensitivity analysis, and post-optimal sensitivity analysis. The proposed approach also paves way for global sensitivity analysis by computing derivative-based global sensitivity measures. We illustrate different aspects of the proposed approach using an inverse problem governed by a scalar linear elliptic PDE, and an inverse problem governed by the three-dimensional equations of linear elasticity, which is motivated by the inversion of the fault-slip field after an earthquake.

北京阿比特科技有限公司