Recently, few-shot molecular property prediction (FSMPP) has garnered increasing attention. Despite impressive breakthroughs achieved by existing methods, they often overlook the inherent many-to-many relationships between molecules and properties, which limits their performance. For instance, similar substructures of molecules can inspire the exploration of new compounds. Additionally, the relationships between properties can be quantified, with high-related properties providing more information in exploring the target property than those low-related. To this end, this paper proposes a novel meta-learning FSMPP framework (KRGTS), which comprises the Knowledge-enhanced Relation Graph module and the Task Sampling module. The knowledge-enhanced relation graph module constructs the molecule-property multi-relation graph (MPMRG) to capture the many-to-many relationships between molecules and properties. The task sampling module includes a meta-training task sampler and an auxiliary task sampler, responsible for scheduling the meta-training process and sampling high-related auxiliary tasks, respectively, thereby achieving efficient meta-knowledge learning and reducing noise introduction. Empirically, extensive experiments on five datasets demonstrate the superiority of KRGTS over a variety of state-of-the-art methods. The code is available in //github.com/Vencent-Won/KRGTS-public.
Large pre-trained Vision-Language Models (VLMs), like CLIP, exhibit strong generalization ability to downstream tasks but struggle in few-shot scenarios. Existing prompting techniques primarily focus on global text and image representations, yet overlooking multi-modal attribute characteristics. This limitation hinders the model's ability to perceive fine-grained visual details and restricts its generalization ability to a broader range of unseen classes. To address this issue, we propose a Multi-modal Attribute Prompting method (MAP) by jointly exploring textual attribute prompting, visual attribute prompting, and attribute-level alignment. The proposed MAP enjoys several merits. First, we introduce learnable visual attribute prompts enhanced by textual attribute semantics to adaptively capture visual attributes for images from unknown categories, boosting fine-grained visual perception capabilities for CLIP. Second, the proposed attribute-level alignment complements the global alignment to enhance the robustness of cross-modal alignment for open-vocabulary objects. To our knowledge, this is the first work to establish cross-modal attribute-level alignment for CLIP-based few-shot adaptation. Extensive experimental results on 11 datasets demonstrate that our method performs favorably against state-of-the-art approaches.
Text-to-image (T2I) generation models have significantly advanced in recent years. However, effective interaction with these models is challenging for average users due to the need for specialized prompt engineering knowledge and the inability to perform multi-turn image generation, hindering a dynamic and iterative creation process. Recent attempts have tried to equip Multi-modal Large Language Models (MLLMs) with T2I models to bring the user's natural language instructions into reality. Hence, the output modality of MLLMs is extended, and the multi-turn generation quality of T2I models is enhanced thanks to the strong multi-modal comprehension ability of MLLMs. However, many of these works face challenges in identifying correct output modalities and generating coherent images accordingly as the number of output modalities increases and the conversations go deeper. Therefore, we propose DialogGen, an effective pipeline to align off-the-shelf MLLMs and T2I models to build a Multi-modal Interactive Dialogue System (MIDS) for multi-turn Text-to-Image generation. It is composed of drawing prompt alignment, careful training data curation, and error correction. Moreover, as the field of MIDS flourishes, comprehensive benchmarks are urgently needed to evaluate MIDS fairly in terms of output modality correctness and multi-modal output coherence. To address this issue, we introduce the Multi-modal Dialogue Benchmark (DialogBen), a comprehensive bilingual benchmark designed to assess the ability of MLLMs to generate accurate and coherent multi-modal content that supports image editing. It contains two evaluation metrics to measure the model's ability to switch modalities and the coherence of the output images. Our extensive experiments on DialogBen and user study demonstrate the effectiveness of DialogGen compared with other State-of-the-Art models.
Currently, end-to-end (E2E) speech recognition methods have achieved promising performance. However, auto speech recognition (ASR) models still face challenges in recognizing multi-accent speech accurately. We propose a layer-adapted fusion (LAF) model, called Qifusion-Net, which does not require any prior knowledge about the target accent. Based on dynamic chunk strategy, our approach enables streaming decoding and can extract frame-level acoustic feature, facilitating fine-grained information fusion. Experiment results demonstrate that our proposed methods outperform the baseline with relative reductions of 22.1$\%$ and 17.2$\%$ in character error rate (CER) across multi accent test datasets on KeSpeech and MagicData-RMAC.
Motion artifacts in Magnetic Resonance Imaging (MRI) arise due to relatively long acquisition times and can compromise the clinical utility of acquired images. Traditional motion correction methods often fail to address severe motion, leading to distorted and unreliable results. Deep Learning (DL) alleviated such pitfalls through generalization with the cost of vanishing structures and hallucinations, making it challenging to apply in the medical field where hallucinated structures can tremendously impact the diagnostic outcome. In this work, we present an instance-wise motion correction pipeline that leverages motion-guided Implicit Neural Representations (INRs) to mitigate the impact of motion artifacts while retaining anatomical structure. Our method is evaluated using the NYU fastMRI dataset with different degrees of simulated motion severity. For the correction alone, we can improve over state-of-the-art image reconstruction methods by $+5\%$ SSIM, $+5\:db$ PSNR, and $+14\%$ HaarPSI. Clinical relevance is demonstrated by a subsequent experiment, where our method improves classification outcomes by at least $+1.5$ accuracy percentage points compared to motion-corrupted images.
Multi-Modal Large Language Models (MLLMs), despite being successful, exhibit limited generality and often fall short when compared to specialized models. Recently, LLM-based agents have been developed to address these challenges by selecting appropriate specialized models as tools based on user inputs. However, such advancements have not been extensively explored within the medical domain. To bridge this gap, this paper introduces the first agent explicitly designed for the medical field, named \textbf{M}ulti-modal \textbf{Med}ical \textbf{Agent} (MMedAgent). We curate an instruction-tuning dataset comprising six medical tools solving seven tasks, enabling the agent to choose the most suitable tools for a given task. Comprehensive experiments demonstrate that MMedAgent achieves superior performance across a variety of medical tasks compared to state-of-the-art open-source methods and even the closed-source model, GPT-4o. Furthermore, MMedAgent exhibits efficiency in updating and integrating new medical tools.
Python's dynamic typing system offers flexibility and expressiveness but can lead to type-related errors, prompting the need for automated type inference to enhance type hinting. While existing learning-based approaches show promising inference accuracy, they struggle with practical challenges in comprehensively handling various types, including complex generic types and (unseen) user-defined types. In this paper, we introduce TIGER, a two-stage generating-then-ranking (GTR) framework, designed to effectively handle Python's diverse type categories. TIGER leverages fine-tuned pre-trained code models to train a generative model with a span masking objective and a similarity model with a contrastive training objective. This approach allows TIGER to generate a wide range of type candidates, including complex generics in the generating stage, and accurately rank them with user-defined types in the ranking stage. Our evaluation on the ManyTypes4Py dataset shows TIGER's advantage over existing methods in various type categories, notably improving accuracy in inferring user-defined and unseen types by 11.2% and 20.1% respectively in Top-5 Exact Match. Moreover, the experimental results not only demonstrate TIGER's superior performance and efficiency, but also underscore the significance of its generating and ranking stages in enhancing automated type inference.
In fingerprint matching, fixed-length descriptors generally offer greater efficiency compared to minutiae set, but the recognition accuracy is not as good as that of the latter. Although much progress has been made in deep learning based fixed-length descriptors recently, they often fall short when dealing with incomplete or partial fingerprints, diverse fingerprint poses, and significant background noise. In this paper, we propose a three-dimensional representation called Fixed-length Dense Descriptor (FDD) for efficient fingerprint matching. FDD features great spatial properties, enabling it to capture the spatial relationships of the original fingerprints, thereby enhancing interpretability and robustness. Our experiments on various fingerprint datasets reveal that FDD outperforms other fixed-length descriptors, especially in matching fingerprints of different areas, cross-modal fingerprint matching, and fingerprint matching with background noise.
We present HyperLoader, a simple approach that combines different parameter-efficient fine-tuning methods in a multi-task setting. To achieve this goal, our model uses a hypernetwork to generate the weights of these modules based on the task, the transformer layer, and its position within this layer. Our method combines the benefits of multi-task learning by capturing the structure of all tasks while reducing the task interference problem by encapsulating the task-specific knowledge in the generated weights and the benefits of combining different parameter-efficient methods to outperform full-fine tuning. We provide empirical evidence that HyperLoader outperforms previous approaches in most datasets and obtains the best average performance across tasks in high-resource and low-resource scenarios.
Panoptic reconstruction is a challenging task in 3D scene understanding. However, most existing methods heavily rely on pre-trained semantic segmentation models and known 3D object bounding boxes for 3D panoptic segmentation, which is not available for in-the-wild scenes. In this paper, we propose a novel zero-shot panoptic reconstruction method from RGB-D images of scenes. For zero-shot segmentation, we leverage open-vocabulary instance segmentation, but it has to face partial labeling and instance association challenges. We tackle both challenges by propagating partial labels with the aid of dense generalized features and building a 3D instance graph for associating 2D instance IDs. Specifically, we exploit partial labels to learn a classifier for generalized semantic features to provide complete labels for scenes with dense distilled features. Moreover, we formulate instance association as a 3D instance graph segmentation problem, allowing us to fully utilize the scene geometry prior and all 2D instance masks to infer global unique pseudo 3D instance ID. Our method outperforms state-of-the-art methods on the indoor dataset ScanNet V2 and the outdoor dataset KITTI-360, demonstrating the effectiveness of our graph segmentation method and reconstruction network.
Zero-shot Learning (ZSL), which aims to predict for those classes that have never appeared in the training data, has arisen hot research interests. The key of implementing ZSL is to leverage the prior knowledge of classes which builds the semantic relationship between classes and enables the transfer of the learned models (e.g., features) from training classes (i.e., seen classes) to unseen classes. However, the priors adopted by the existing methods are relatively limited with incomplete semantics. In this paper, we explore richer and more competitive prior knowledge to model the inter-class relationship for ZSL via ontology-based knowledge representation and semantic embedding. Meanwhile, to address the data imbalance between seen classes and unseen classes, we developed a generative ZSL framework with Generative Adversarial Networks (GANs). Our main findings include: (i) an ontology-enhanced ZSL framework that can be applied to different domains, such as image classification (IMGC) and knowledge graph completion (KGC); (ii) a comprehensive evaluation with multiple zero-shot datasets from different domains, where our method often achieves better performance than the state-of-the-art models. In particular, on four representative ZSL baselines of IMGC, the ontology-based class semantics outperform the previous priors e.g., the word embeddings of classes by an average of 12.4 accuracy points in the standard ZSL across two example datasets (see Figure 4).