亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider an auto-scaling technique in a cloud system where virtual machines hosted on a physical node are turned on and off depending on the queue's occupation (or thresholds), in order to minimise a global cost integrating both energy consumption and performance. We propose several efficient optimisation methods to find threshold values minimising this global cost: local search heuristics coupled with aggregation of Markov chain and with queues approximation techniques to reduce the execution time and improve the accuracy. The second approach tackles the problem with a Markov Decision Process (MDP) for which we proceed to a theoretical study and provide theoretical comparison with the first approach. We also develop structured MDP algorithms integrating hysteresis properties. We show that MDP algorithms (value iteration, policy iteration) and especially structured MDP algorithms outperform the devised heuristics, in terms of time execution and accuracy. Finally, we propose a cost model for a real scenario of a cloud system to apply our optimisation algorithms and show their relevance.

相關內容

 Processing 是一門開源編程語言和與之配套的集成開發環境(IDE)的名稱。Processing 在電子藝術和視覺設計社區被用來教授編程基礎,并運用于大量的新媒體和互動藝術作品中。

Policy iteration techniques for multiple-server dispatching rely on the computation of value functions. In this context, we consider the continuous-space M/G/1-FCFS queue endowed with an arbitrarily-designed cost function for the waiting times of the incoming jobs. The associated relative value function is a solution of Poisson's equation for Markov chains, which in this work we solve in the Laplace transform domain by considering an ancillary, underlying stochastic process extended to (imaginary) negative backlog states. This construction enables us to issue closed-form relative value functions for polynomial and exponential cost functions and for piecewise compositions of the latter, in turn permitting the derivation of interval bounds for the relative value function in the form of power series or trigonometric sums. We review various cost approximation schemes and assess the convergence of the interval bounds these induce on the relative value function. Namely: Taylor expansions (divergent, except for a narrow class of entire functions with low orders of growth), and uniform approximation schemes (polynomials, trigonometric), which achieve optimal convergence rates over finite intervals. This study addresses all the steps to implementing dispatching policies for systems of parallel servers, from the specification of general cost functions towards the computation of interval bounds for the relative value functions and the exact implementation of the first-policy improvement step.

This paper develops a unified and computationally efficient method for change-point inference in non-stationary spatio-temporal processes. By modeling a non-stationary spatio-temporal process as a piecewise stationary spatio-temporal process, we consider simultaneous estimation of the number and locations of change-points, and model parameters in each segment. A composite likelihood-based criterion is developed for change-point and parameters estimation. Under the framework of increasing domain asymptotics, theoretical results including consistency and distribution of the estimators are derived under mild conditions. In contrast to classical results in fixed dimensional time series that the localization error of change-point estimator is $O_{p}(1)$, exact recovery of true change-points can be achieved in the spatio-temporal setting. More surprisingly, the consistency of change-point estimation can be achieved without any penalty term in the criterion function. In addition, we further establish consistency of the number and locations of the change-point estimator under the infill asymptotics framework where the time domain is increasing while the spatial sampling domain is fixed. A computationally efficient pruned dynamic programming algorithm is developed for the challenging criterion optimization problem. Extensive simulation studies and an application to U.S. precipitation data are provided to demonstrate the effectiveness and practicality of the proposed method.

Physically-inspired latent force models offer an interpretable alternative to purely data driven tools for inference in dynamical systems. They carry the structure of differential equations and the flexibility of Gaussian processes, yielding interpretable parameters and dynamics-imposed latent functions. However, the existing inference techniques associated with these models rely on the exact computation of posterior kernel terms which are seldom available in analytical form. Most applications relevant to practitioners, such as Hill equations or diffusion equations, are hence intractable. In this paper, we overcome these computational problems by proposing a variational solution to a general class of non-linear and parabolic partial differential equation latent force models. Further, we show that a neural operator approach can scale our model to thousands of instances, enabling fast, distributed computation. We demonstrate the efficacy and flexibility of our framework by achieving competitive performance on several tasks where the kernels are of varying degrees of tractability.

Piecewise deterministic Markov processes (PDMPs) are a class of stochastic processes with applications in several fields of applied mathematics spanning from mathematical modeling of physical phenomena to computational methods. A PDMP is specified by three characteristic quantities: the deterministic motion, the law of the random event times, and the jump kernels. The applicability of PDMPs to real world scenarios is currently limited by the fact that these processes can be simulated only when these three characteristics of the process can be simulated exactly. In order to overcome this problem, we introduce discretisation schemes for PDMPs which make their approximate simulation possible. In particular, we design both first order and higher order schemes that rely on approximations of one or more of the three characteristics. For the proposed approximation schemes we study both pathwise convergence to the continuous PDMP as the step size converges to zero and convergence in law to the invariant measure of the PDMP in the long time limit. Moreover, we apply our theoretical results to several PDMPs that arise from the computational statistics and mathematical biology literature.

An informative measurement is the most efficient way to gain information about an unknown state. We give a first-principles derivation of a general-purpose dynamic programming algorithm that returns a sequence of informative measurements by sequentially maximizing the entropy of possible measurement outcomes. This algorithm can be used by an autonomous agent or robot to decide where best to measure next, planning a path corresponding to an optimal sequence of informative measurements. This algorithm is applicable to states and controls that are continuous or discrete, and agent dynamics that is either stochastic or deterministic; including Markov decision processes. Recent results from approximate dynamic programming and reinforcement learning, including on-line approximations such as rollout and Monte Carlo tree search, allow an agent or robot to solve the measurement task in real-time. The resulting near-optimal solutions include non-myopic paths and measurement sequences that can generally outperform, sometimes substantially, commonly-used greedy heuristics such as maximizing the entropy of each measurement outcome. This is demonstrated for a global search problem, where on-line planning with an extended local search is found to reduce the number of measurements in the search by half.

We explore the connection between outlier-robust high-dimensional statistics and non-convex optimization in the presence of sparsity constraints, with a focus on the fundamental tasks of robust sparse mean estimation and robust sparse PCA. We develop novel and simple optimization formulations for these problems such that any approximate stationary point of the associated optimization problem yields a near-optimal solution for the underlying robust estimation task. As a corollary, we obtain that any first-order method that efficiently converges to stationarity yields an efficient algorithm for these tasks. The obtained algorithms are simple, practical, and succeed under broader distributional assumptions compared to prior work.

Derivative based optimization methods are efficient at solving optimal control problems near local optima. However, their ability to converge halts when derivative information vanishes. The inference approach to optimal control does not have strict requirements on the objective landscape. However, sampling, the primary tool for solving such problems, tends to be much slower in computation time. We propose a new method that combines second order methods with inference. We utilise the Kullback Leibler (KL) control framework to formulate an inference problem that computes the optimal controls from an adaptive distribution approximating the solution of the second order method. Our method allows for combining simple convex and non convex cost functions. This simplifies the process of cost function design and leverages the strengths of both inference and second order optimization. We compare our method to Model Predictive Path Integral (MPPI) and iterative Linear Quadratic Regulator (iLQG), outperforming both in sample efficiency and quality on manipulation and obstacle avoidance tasks.

We consider the power of local algorithms for approximately solving Max $k$XOR, a generalization of two constraint satisfaction problems previously studied with classical and quantum algorithms (MaxCut and Max E3LIN2). On instances with either random signs or no overlapping clauses and $D+1$ clauses per variable, we calculate the average satisfying fraction of the depth-1 QAOA and compare with a generalization of the local threshold algorithm. Notably, the quantum algorithm outperforms the threshold algorithm for $k > 4$. On the other hand, we highlight potential difficulties for the QAOA to achieve computational quantum advantage on this problem. We first compute a tight upper bound on the maximum satisfying fraction of nearly all large random regular Max $k$XOR instances by numerically calculating the ground state energy density $P(k)$ of a mean-field $k$-spin glass. The upper bound grows with $k$ much faster than the performance of both one-local algorithms. We also identify a new obstruction result for low-depth quantum circuits (including the QAOA) when $k=3$, generalizing a result of Bravyi et al [arXiv:1910.08980] when $k=2$. We conjecture that a similar obstruction exists for all $k$.

We study the theoretical properties of a variational Bayes method in the Gaussian Process regression model. We consider the inducing variables method introduced by Titsias (2009a) and derive sufficient conditions for obtaining contraction rates for the corresponding variational Bayes (VB) posterior. As examples we show that for three particular covariance kernels (Mat\'ern, squared exponential, random series prior) the VB approach can achieve optimal, minimax contraction rates for a sufficiently large number of appropriately chosen inducing variables. The theoretical findings are demonstrated by numerical experiments.

Because of continuous advances in mathematical programing, Mix Integer Optimization has become a competitive vis-a-vis popular regularization method for selecting features in regression problems. The approach exhibits unquestionable foundational appeal and versatility, but also poses important challenges. We tackle these challenges, reducing computational burden when tuning the sparsity bound (a parameter which is critical for effectiveness) and improving performance in the presence of feature collinearity and of signals that vary in nature and strength. Importantly, we render the approach efficient and effective in applications of realistic size and complexity - without resorting to relaxations or heuristics in the optimization, or abandoning rigorous cross-validation tuning. Computational viability and improved performance in subtler scenarios is achieved with a multi-pronged blueprint, leveraging characteristics of the Mixed Integer Programming framework and by means of whitening, a data pre-processing step.

北京阿比特科技有限公司