This paper presents a novel computational scheme for sensitivity analysis of the velocity field in the level set method using the discrete adjoint method. The velocity field is represented in B-spline space, and the adjoint equations are constructed based on the discretized governing equations. The key contribution of this work is the demonstration that the velocity field in the level set method can be entirely obtained from the discrete adjoint method. This eliminates the need for shape sensitivity analysis, which is commonly used in standard level set methods. The results demonstrate the effectiveness of the approach in producing optimized results for stress and linearized buckling problems. Overall, the proposed method has the potential to simplify the way in which topology optimization problems using level set methods are solved, and has significant implications for the design of a broad range of engineering applications.
We develop a general and practical framework to address the problem of the optimal design of dynamic fee mechanisms for multiple blockchain resources. Our framework allows to compute policies that optimally trade-off between adjusting resource prices to handle persistent demand shifts versus being robust to local noise in the observed block demand. In the general case with more than one resource, our optimal policies correctly handle cross-effects (complementarity and substitutability) in resource demands. We also show how these cross-effects can be used to inform resource design, i.e. combining resources into bundles that have low demand-side cross-effects can yield simpler and more efficient price-update rules. Our framework is also practical, we demonstrate how it can be used to refine or inform the design of heuristic fee update rules such as EIP-1559 or EIP-4844 with two case studies. We then estimate a uni-dimensional version of our model using real market data from the Ethereum blockchain and empirically compare the performance of our optimal policies to EIP-1559.
This paper is concerned with the expressivity and denotational semantics of a functional higher-order reversible programming language based on Theseus. In this language, pattern-matching is used to ensure the reversibility of functions. We show how one can encode any Reversible Turing Machine in said language. We then build a sound and adequate categorical semantics based on join inverse categories, with additional structures to capture pattern-matching. We then derive a full completeness result, stating that any computable, partial injective function is the image of a term in the language.
We present a novel adversarial model for authentication systems that use gait patterns recorded by the inertial measurement unit (IMU) built into smartphones. The attack idea is inspired by and named after the concept of a dictionary attack on knowledge (PIN or password) based authentication systems. In particular, this work investigates whether it is possible to build a dictionary of IMUGait patterns and use it to launch an attack or find an imitator who can actively reproduce IMUGait patterns that match the target's IMUGait pattern. Nine physically and demographically diverse individuals walked at various levels of four predefined controllable and adaptable gait factors (speed, step length, step width, and thigh-lift), producing 178 unique IMUGait patterns. Each pattern attacked a wide variety of user authentication models. The deeper analysis of error rates (before and after the attack) challenges the belief that authentication systems based on IMUGait patterns are the most difficult to spoof; further research is needed on adversarial models and associated countermeasures.
This paper explicitly models a coarse and noisy quantization in a communication system empowered by orthogonal time frequency space (OTFS) for cost and power efficiency. We first point out, with coarse quantization, the effective channel is imbalanced and thus no longer able to circularly shift the transmitted symbols along the delay-Doppler domain. Meanwhile, the effective channel is non-isotropic, which imposes a significant loss to symbol detection algorithms like the original approximate message passing (AMP). Although the algorithm of generalized expectation consistent for signal recovery (GEC-SR) can mitigate this loss, the complexity in computation is prohibitively high, mainly due to an dramatic increase in the matrix size of OTFS. In this context, we propose a low-complexity algorithm that incorporates into the GEC-SR a quick inversion of quasi-banded matrices, reducing the complexity from a cubic order to a linear order while keeping the performance at the same level.
Data-flow analysis is a general technique used to compute information of interest at different points of a program and is considered to be a cornerstone of static analysis. In this thesis, we consider interprocedural data-flow analysis as formalized by the standard IFDS framework, which can express many widely-used static analyses such as reaching definitions, live variables, and null-pointer. We focus on the well-studied on-demand setting in which queries arrive one-by-one in a stream and each query should be answered as fast as possible. While the classical IFDS algorithm provides a polynomial-time solution to this problem, it is not scalable in practice. Specifically, it either requires a quadratic-time preprocessing phase or takes linear time per query, both of which are untenable for modern huge codebases with hundreds of thousands of lines. Previous works have already shown that parameterizing the problem by the treewidth of the program's control-flow graph is promising and can lead to significant gains in efficiency. Unfortunately, these results were only applicable to the limited special case of same-context queries. In this work, we obtain significant speedups for the general case of on-demand IFDS with queries that are not necessarily same-context. This is achieved by exploiting a new graph sparsity parameter, namely the treedepth of the program's call graph. Our approach is the first to exploit the sparsity of control-flow graphs and call graphs at the same time and parameterize by both treewidth and treedepth. We obtain an algorithm with a linear preprocessing phase that can answer each query in constant time with respect to the input size. Finally, we show experimental results demonstrating that our approach significantly outperforms the classical IFDS and its on-demand variant.
This paper addresses the prediction stability, prediction accuracy and control capability of the current probabilistic model-based reinforcement learning (MBRL) built on neural networks. A novel approach dropout-based probabilistic ensembles with trajectory sampling (DPETS) is proposed where the system uncertainty is stably predicted by combining the Monte-Carlo dropout and trajectory sampling in one framework. Its loss function is designed to correct the fitting error of neural networks for more accurate prediction of probabilistic models. The state propagation in its policy is extended to filter the aleatoric uncertainty for superior control capability. Evaluated by several Mujoco benchmark control tasks under additional disturbances and one practical robot arm manipulation task, DPETS outperforms related MBRL approaches in both average return and convergence velocity while achieving superior performance than well-known model-free baselines with significant sample efficiency. The open source code of DPETS is available at //github.com/mrjun123/DPETS.
Pre-trained Language Models (PLMs) which are trained on large text corpus via self-supervised learning method, have yielded promising performance on various tasks in Natural Language Processing (NLP). However, though PLMs with huge parameters can effectively possess rich knowledge learned from massive training text and benefit downstream tasks at the fine-tuning stage, they still have some limitations such as poor reasoning ability due to the lack of external knowledge. Research has been dedicated to incorporating knowledge into PLMs to tackle these issues. In this paper, we present a comprehensive review of Knowledge-Enhanced Pre-trained Language Models (KE-PLMs) to provide a clear insight into this thriving field. We introduce appropriate taxonomies respectively for Natural Language Understanding (NLU) and Natural Language Generation (NLG) to highlight these two main tasks of NLP. For NLU, we divide the types of knowledge into four categories: linguistic knowledge, text knowledge, knowledge graph (KG), and rule knowledge. The KE-PLMs for NLG are categorized into KG-based and retrieval-based methods. Finally, we point out some promising future directions of KE-PLMs.
Link prediction on knowledge graphs (KGs) is a key research topic. Previous work mainly focused on binary relations, paying less attention to higher-arity relations although they are ubiquitous in real-world KGs. This paper considers link prediction upon n-ary relational facts and proposes a graph-based approach to this task. The key to our approach is to represent the n-ary structure of a fact as a small heterogeneous graph, and model this graph with edge-biased fully-connected attention. The fully-connected attention captures universal inter-vertex interactions, while with edge-aware attentive biases to particularly encode the graph structure and its heterogeneity. In this fashion, our approach fully models global and local dependencies in each n-ary fact, and hence can more effectively capture associations therein. Extensive evaluation verifies the effectiveness and superiority of our approach. It performs substantially and consistently better than current state-of-the-art across a variety of n-ary relational benchmarks. Our code is publicly available.
Recently, ensemble has been applied to deep metric learning to yield state-of-the-art results. Deep metric learning aims to learn deep neural networks for feature embeddings, distances of which satisfy given constraint. In deep metric learning, ensemble takes average of distances learned by multiple learners. As one important aspect of ensemble, the learners should be diverse in their feature embeddings. To this end, we propose an attention-based ensemble, which uses multiple attention masks, so that each learner can attend to different parts of the object. We also propose a divergence loss, which encourages diversity among the learners. The proposed method is applied to the standard benchmarks of deep metric learning and experimental results show that it outperforms the state-of-the-art methods by a significant margin on image retrieval tasks.
In this paper, we propose the joint learning attention and recurrent neural network (RNN) models for multi-label classification. While approaches based on the use of either model exist (e.g., for the task of image captioning), training such existing network architectures typically require pre-defined label sequences. For multi-label classification, it would be desirable to have a robust inference process, so that the prediction error would not propagate and thus affect the performance. Our proposed model uniquely integrates attention and Long Short Term Memory (LSTM) models, which not only addresses the above problem but also allows one to identify visual objects of interests with varying sizes without the prior knowledge of particular label ordering. More importantly, label co-occurrence information can be jointly exploited by our LSTM model. Finally, by advancing the technique of beam search, prediction of multiple labels can be efficiently achieved by our proposed network model.