In the ever-evolving field of Artificial Intelligence, a critical challenge has been to decipher the decision-making processes within the so-called "black boxes" in deep learning. Over recent years, a plethora of methods have emerged, dedicated to explaining decisions across diverse tasks. Particularly in tasks like image classification, these methods typically identify and emphasize the pivotal pixels that most influence a classifier's prediction. Interestingly, this approach mirrors human behavior: when asked to explain our rationale for classifying an image, we often point to the most salient features or aspects. Capitalizing on this parallel, our research embarked on a user-centric study. We sought to objectively measure the interpretability of three leading explanation methods: (1) Prototypical Part Network, (2) Occlusion, and (3) Layer-wise Relevance Propagation. Intriguingly, our results highlight that while the regions spotlighted by these methods can vary widely, they all offer humans a nearly equivalent depth of understanding. This enables users to discern and categorize images efficiently, reinforcing the value of these methods in enhancing AI transparency.
Machine learning methods can be a valuable aid in the scientific process, but they need to face challenging settings where data come from inhomogeneous experimental conditions. Recent meta-learning methods have made significant progress in multi-task learning, but they rely on black-box neural networks, resulting in high computational costs and limited interpretability. Leveraging the structure of the learning problem, we argue that multi-environment generalization can be achieved using a simpler learning model, with an affine structure with respect to the learning task. Crucially, we prove that this architecture can identify the physical parameters of the system, enabling interpreable learning. We demonstrate the competitive generalization performance and the low computational cost of our method by comparing it to state-of-the-art algorithms on physical systems, ranging from toy models to complex, non-analytical systems. The interpretability of our method is illustrated with original applications to physical-parameter-induced adaptation and to adaptive control.
We propose a new Bayesian heteroskedastic Markov-switching structural vector autoregression with data-driven time-varying identification. The model selects alternative exclusion restrictions over time and, as a condition for the search, allows to verify identification through heteroskedasticity within each regime. Based on four alternative monetary policy rules, we show that a monthly six-variable system supports time variation in US monetary policy shock identification. In the sample-dominating first regime, systematic monetary policy follows a Taylor rule extended by the term spread, effectively curbing inflation. In the second regime, occurring after 2000 and gaining more persistence after the global financial and COVID crises, it is characterized by a money-augmented Taylor rule. This regime's unconventional monetary policy provides economic stimulus, features the liquidity effect, and is complemented by a pure term spread shock. Absent the specific monetary policy of the second regime, inflation would be over one percentage point higher on average after 2008.
Despite the practicality of quantile regression (QR), simultaneous estimation of multiple QR curves continues to be challenging. We address this problem by proposing a Bayesian nonparametric framework that generalizes the quantile pyramid by replacing each scalar variate in the quantile pyramid with a stochastic process on a covariate space. We propose a novel approach to show the existence of a quantile pyramid for all quantiles. The process of dependent quantile pyramids allows for non-linear QR and automatically ensures non-crossing of QR curves on the covariate space. Simulation studies document the performance and robustness of our approach. An application to cyclone intensity data is presented.
We introduce LEAP (illustrated in Figure 1), a novel method for generating video-grounded action programs through use of a Large Language Model (LLM). These action programs represent the motoric, perceptual, and structural aspects of action, and consist of sub-actions, pre- and post-conditions, and control flows. LEAP's action programs are centered on egocentric video and employ recent developments in LLMs both as a source for program knowledge and as an aggregator and assessor of multimodal video information. We apply LEAP over a majority (87\%) of the training set of the EPIC Kitchens dataset, and release the resulting action programs as a publicly available dataset here (//drive.google.com/drive/folders/1Cpkw_TI1IIxXdzor0pOXG3rWJWuKU5Ex?usp=drive_link). We employ LEAP as a secondary source of supervision, using its action programs in a loss term applied to action recognition and anticipation networks. We demonstrate sizable improvements in performance in both tasks due to training with the LEAP dataset. Our method achieves 1st place on the EPIC Kitchens Action Recognition leaderboard as of November 17 among the networks restricted to RGB-input (see Supplementary Materials).
As the impending consequences of climate change loom over the Earth, it has become vital for researchers to understand the role microorganisms play in this process. In this paper, we examine how environmental factors, including moisture levels and temperature, affect the expression of certain fungal characteristics on a microscale, and how these in turn affect fungal biodiversity and ecosystem decomposition rates over time. We first present a differential equation model to understand how the distribution of different fungal isolates depends on regional moisture levels. We introduce both slow and sudden variations into the environment in order to represent the various ways climate change will impact fungal ecosystems. This model demonstrates that increased variability in moisture (both short-term and long-term) increases biodiversity and that fungal populations will shift towards more stress-tolerant fungi as aridity increases. The model further suggests the lack of any direct link between biodiversity and decomposition rates. To better describe fungal competition with respect to space, we develop a local agent-based model (ABM). Unlike the previous model, our ABM focuses on individuals, tracking each fungus and the result of its interactions. Our ABM also features a more accurate spatial combat system, allowing us to precisely discern the influence of fungal interactions on the environment. This model corroborates the results of the differential equation model and further suggests that moisture, through its link with temperature and effects on fungal population, also plays a strong role in determining fungal decomposition rates. Together, these models suggest that climate change, which portends increasing variability in regional conditions and higher average temperatures worldwide, will lead to an increase in both wood decomposition rates and, independently, fungal biodiversity.
The concept of causality plays an important role in human cognition . In the past few decades, causal inference has been well developed in many fields, such as computer science, medicine, economics, and education. With the advancement of deep learning techniques, it has been increasingly used in causal inference against counterfactual data. Typically, deep causal models map the characteristics of covariates to a representation space and then design various objective optimization functions to estimate counterfactual data unbiasedly based on the different optimization methods. This paper focuses on the survey of the deep causal models, and its core contributions are as follows: 1) we provide relevant metrics under multiple treatments and continuous-dose treatment; 2) we incorporate a comprehensive overview of deep causal models from both temporal development and method classification perspectives; 3) we assist a detailed and comprehensive classification and analysis of relevant datasets and source code.
Images can convey rich semantics and induce various emotions in viewers. Recently, with the rapid advancement of emotional intelligence and the explosive growth of visual data, extensive research efforts have been dedicated to affective image content analysis (AICA). In this survey, we will comprehensively review the development of AICA in the recent two decades, especially focusing on the state-of-the-art methods with respect to three main challenges -- the affective gap, perception subjectivity, and label noise and absence. We begin with an introduction to the key emotion representation models that have been widely employed in AICA and description of available datasets for performing evaluation with quantitative comparison of label noise and dataset bias. We then summarize and compare the representative approaches on (1) emotion feature extraction, including both handcrafted and deep features, (2) learning methods on dominant emotion recognition, personalized emotion prediction, emotion distribution learning, and learning from noisy data or few labels, and (3) AICA based applications. Finally, we discuss some challenges and promising research directions in the future, such as image content and context understanding, group emotion clustering, and viewer-image interaction.
Evaluating the quality of learned representations without relying on a downstream task remains one of the challenges in representation learning. In this work, we present Geometric Component Analysis (GeomCA) algorithm that evaluates representation spaces based on their geometric and topological properties. GeomCA can be applied to representations of any dimension, independently of the model that generated them. We demonstrate its applicability by analyzing representations obtained from a variety of scenarios, such as contrastive learning models, generative models and supervised learning models.
Residual networks (ResNets) have displayed impressive results in pattern recognition and, recently, have garnered considerable theoretical interest due to a perceived link with neural ordinary differential equations (neural ODEs). This link relies on the convergence of network weights to a smooth function as the number of layers increases. We investigate the properties of weights trained by stochastic gradient descent and their scaling with network depth through detailed numerical experiments. We observe the existence of scaling regimes markedly different from those assumed in neural ODE literature. Depending on certain features of the network architecture, such as the smoothness of the activation function, one may obtain an alternative ODE limit, a stochastic differential equation or neither of these. These findings cast doubts on the validity of the neural ODE model as an adequate asymptotic description of deep ResNets and point to an alternative class of differential equations as a better description of the deep network limit.
Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.