Research demonstrates that the proactivity of in-vehicle conversational assistants (IVCAs) can help to reduce distractions and enhance driving safety, better meeting users' cognitive needs. However, existing IVCAs struggle with user intent recognition and context awareness, which leads to suboptimal proactive interactions. Large language models (LLMs) have shown potential for generalizing to various tasks with prompts, but their application in IVCAs and exploration of proactive interaction remain under-explored. These raise questions about how LLMs improve proactive interactions for IVCAs and influence user perception. To investigate these questions systematically, we establish a framework with five proactivity levels across two dimensions-assumption and autonomy-for IVCAs. According to the framework, we propose a "Rewrite + ReAct + Reflect" strategy, aiming to empower LLMs to fulfill the specific demands of each proactivity level when interacting with users. Both feasibility and subjective experiments are conducted. The LLM outperforms the state-of-the-art model in success rate and achieves satisfactory results for each proactivity level. Subjective experiments with 40 participants validate the effectiveness of our framework and show the proactive level with strong assumptions and user confirmation is most appropriate.
We introduce the task of human action anomaly detection (HAAD), which aims to identify anomalous motions in an unsupervised manner given only the pre-determined normal category of training action samples. Compared to prior human-related anomaly detection tasks which primarily focus on unusual events from videos, HAAD involves the learning of specific action labels to recognize semantically anomalous human behaviors. To address this task, we propose a normalizing flow (NF)-based detection framework where the sample likelihood is effectively leveraged to indicate anomalies. As action anomalies often occur in some specific body parts, in addition to the full-body action feature learning, we incorporate extra encoding streams into our framework for a finer modeling of body subsets. Our framework is thus multi-level to jointly discover global and local motion anomalies. Furthermore, to show awareness of the potentially jittery data during recording, we resort to discrete cosine transformation by converting the action samples from the temporal to the frequency domain to mitigate the issue of data instability. Extensive experimental results on two human action datasets demonstrate that our method outperforms the baselines formed by adapting state-of-the-art human activity AD approaches to our task of HAAD.
Estimating heterogeneous treatment effects (HTEs) is crucial for precision medicine. While multiple studies can improve the generalizability of results, leveraging them for estimation is statistically challenging. Existing approaches often assume identical HTEs across studies, but this may be violated due to various sources of between-study heterogeneity, including differences in study design, study populations, and data collection protocols, among others. To this end, we propose a framework for multi-study HTE estimation that accounts for between-study heterogeneity in the nuisance functions and treatment effects. Our approach, the multi-study R-learner, extends the R-learner to obtain principled statistical estimation with machine learning (ML) in the multi-study setting. It involves a data-adaptive objective function that links study-specific treatment effects with nuisance functions through membership probabilities, which enable information to be borrowed across potentially heterogeneous studies. The multi-study R-learner framework can combine data from randomized controlled trials, observational studies, or a combination of both. It's easy to implement and flexible in its ability to incorporate ML for estimating HTEs, nuisance functions, and membership probabilities. In the series estimation framework, we show that the multi-study R-learner is asymptotically normal and more efficient than the R-learner when there is between-study heterogeneity in the propensity score model under homoscedasticity. We illustrate using cancer data that the proposed method performs favorably compared to existing approaches in the presence of between-study heterogeneity.
Near-field propagation, particularly that enabled by reconfigurable intelligent surfaces (RIS), has emerged as a promising research topic in recent years. However, a comprehensive literature review on RIS-based near-field technologies is still lacking. This article aims to fill this gap by providing a brief overview of near-field concepts and a systematic survey of the state-of-the-art RIS-based near-field technologies. The focus is on three key aspects: the construction of ubiquitous near-field wireless propagation environments using RIS, the enabling of new near-field paradigms for 6G networks through RIS, and the challenges faced by RIS-based near-field technologies. This technical review intends to facilitate the development and innovation of RIS-based near-field technologies.
We show that (local) confluence of terminating locally constrained rewrite systems is undecidable, even when the underlying theory is decidable. Several confluence criteria for logically constrained rewrite systems are known. These were obtained by replaying existing proofs for plain term rewrite systems in a constrained setting, involving a non-trivial effort. We present a simple transformation from logically constrained rewrite systems to term rewrite systems such that critical pairs of the latter correspond to constrained critical pairs of the former. The usefulness of the transformation is illustrated by lifting the advanced confluence results based on (almost) development closed critical pairs as well as on parallel critical pairs to the constrained setting.
Human doctors with well-structured medical knowledge can diagnose a disease merely via a few conversations with patients about symptoms. In contrast, existing knowledge-grounded dialogue systems often require a large number of dialogue instances to learn as they fail to capture the correlations between different diseases and neglect the diagnostic experience shared among them. To address this issue, we propose a more natural and practical paradigm, i.e., low-resource medical dialogue generation, which can transfer the diagnostic experience from source diseases to target ones with a handful of data for adaptation. It is capitalized on a commonsense knowledge graph to characterize the prior disease-symptom relations. Besides, we develop a Graph-Evolving Meta-Learning (GEML) framework that learns to evolve the commonsense graph for reasoning disease-symptom correlations in a new disease, which effectively alleviates the needs of a large number of dialogues. More importantly, by dynamically evolving disease-symptom graphs, GEML also well addresses the real-world challenges that the disease-symptom correlations of each disease may vary or evolve along with more diagnostic cases. Extensive experiment results on the CMDD dataset and our newly-collected Chunyu dataset testify the superiority of our approach over state-of-the-art approaches. Besides, our GEML can generate an enriched dialogue-sensitive knowledge graph in an online manner, which could benefit other tasks grounded on knowledge graph.
Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.
Domain shift is a fundamental problem in visual recognition which typically arises when the source and target data follow different distributions. The existing domain adaptation approaches which tackle this problem work in the closed-set setting with the assumption that the source and the target data share exactly the same classes of objects. In this paper, we tackle a more realistic problem of open-set domain shift where the target data contains additional classes that are not present in the source data. More specifically, we introduce an end-to-end Progressive Graph Learning (PGL) framework where a graph neural network with episodic training is integrated to suppress underlying conditional shift and adversarial learning is adopted to close the gap between the source and target distributions. Compared to the existing open-set adaptation approaches, our approach guarantees to achieve a tighter upper bound of the target error. Extensive experiments on three standard open-set benchmarks evidence that our approach significantly outperforms the state-of-the-arts in open-set domain adaptation.
Knowledge graph embedding, which aims to represent entities and relations as low dimensional vectors (or matrices, tensors, etc.), has been shown to be a powerful technique for predicting missing links in knowledge graphs. Existing knowledge graph embedding models mainly focus on modeling relation patterns such as symmetry/antisymmetry, inversion, and composition. However, many existing approaches fail to model semantic hierarchies, which are common in real-world applications. To address this challenge, we propose a novel knowledge graph embedding model---namely, Hierarchy-Aware Knowledge Graph Embedding (HAKE)---which maps entities into the polar coordinate system. HAKE is inspired by the fact that concentric circles in the polar coordinate system can naturally reflect the hierarchy. Specifically, the radial coordinate aims to model entities at different levels of the hierarchy, and entities with smaller radii are expected to be at higher levels; the angular coordinate aims to distinguish entities at the same level of the hierarchy, and these entities are expected to have roughly the same radii but different angles. Experiments demonstrate that HAKE can effectively model the semantic hierarchies in knowledge graphs, and significantly outperforms existing state-of-the-art methods on benchmark datasets for the link prediction task.
The low resolution of objects of interest in aerial images makes pedestrian detection and action detection extremely challenging tasks. Furthermore, using deep convolutional neural networks to process large images can be demanding in terms of computational requirements. In order to alleviate these challenges, we propose a two-step, yes and no question answering framework to find specific individuals doing one or multiple specific actions in aerial images. First, a deep object detector, Single Shot Multibox Detector (SSD), is used to generate object proposals from small aerial images. Second, another deep network, is used to learn a latent common sub-space which associates the high resolution aerial imagery and the pedestrian action labels that are provided by the human-based sources
Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis.