Power posteriors "robustify" standard Bayesian inference by raising the likelihood to a constant fractional power, effectively downweighting its influence in the calculation of the posterior. Power posteriors have been shown to be more robust to model misspecification than standard posteriors in many settings. Previous work has shown that power posteriors derived from low-dimensional, parametric locally asymptotically normal models are asymptotically normal (Bernstein-von Mises) even under model misspecification. We extend these results to show that the power posterior moments converge to those of the limiting normal distribution suggested by the Bernstein-von Mises theorem. We then use this result to show that the mean of the power posterior, a point estimator, is asymptotically equivalent to the maximum likelihood estimator.
This paper investigates extremal quantiles under two-way cluster dependence. We demonstrate that the limiting distribution of the unconditional intermediate order quantiles in the tails converges to a Gaussian distribution. This is remarkable as two-way cluster dependence entails potential non-Gaussianity in general, but extremal quantiles do not suffer from this issue. Building upon this result, we extend our analysis to extremal quantile regressions of intermediate order.
Running quantum algorithms protected by quantum error correction requires a real time, classical decoder. To prevent the accumulation of a backlog, this decoder must process syndromes from the quantum device at a faster rate than they are generated. Most prior work on real time decoding has focused on an isolated logical qubit encoded in the surface code. However, for surface code, quantum programs of utility will require multi-qubit interactions performed via lattice surgery. A large merged patch can arise during lattice surgery -- possibly as large as the entire device. This puts a significant strain on a real time decoder, which must decode errors on this merged patch and maintain the level of fault-tolerance that it achieves on isolated logical qubits. These requirements are relaxed by using spatially parallel decoding, which can be accomplished by dividing the physical qubits on the device into multiple overlapping groups and assigning a decoder module to each. We refer to this approach as spatially parallel windows. While previous work has explored similar ideas, none have addressed system-specific considerations pertinent to the task or the constraints from using hardware accelerators. In this work, we demonstrate how to configure spatially parallel windows, so that the scheme (1) is compatible with hardware accelerators, (2) supports general lattice surgery operations, (3) maintains the fidelity of the logical qubits, and (4) meets the throughput requirement for real time decoding. Furthermore, our results reveal the importance of optimally choosing the buffer width to achieve a balance between accuracy and throughput -- a decision that should be influenced by the device's physical noise.
Recently, efficiently deploying deep learning solutions on the edge has received increasing attention. New platforms are emerging to support the increasing demand for flexibility and high performance. In this work, we explore the efficient mapping of convolutional layers on an open-hardware, low-power Coarse-Grain Reconfigurable Array (CGRA), namely OpenEdgeCGRA. We explore both direct implementations of convolution and solutions that transform it into a matrix multiplication through an Im2col transformation, and experiment with various tensor parallelism axes. We show that for this hardware target, direct convolution, coupled with weight parallelism reaches the best latency and energy efficiency, outperforming a CPU implementation by 3.4x and 9.9x in terms of energy and latency, respectively.
Despite recent availability of large transcribed Kinyarwanda speech data, achieving robust speech recognition for Kinyarwanda is still challenging. In this work, we show that using self-supervised pre-training, following a simple curriculum schedule during fine-tuning and using semi-supervised learning to leverage large unlabelled speech data significantly improve speech recognition performance for Kinyarwanda. Our approach focuses on using public domain data only. A new studio-quality speech dataset is collected from a public website, then used to train a clean baseline model. The clean baseline model is then used to rank examples from a more diverse and noisy public dataset, defining a simple curriculum training schedule. Finally, we apply semi-supervised learning to label and learn from large unlabelled data in five successive generations. Our final model achieves 3.2% word error rate (WER) on the new dataset and 15.6% WER on Mozilla Common Voice benchmark, which is state-of-the-art to the best of our knowledge. Our experiments also indicate that using syllabic rather than character-based tokenization results in better speech recognition performance for Kinyarwanda.
Simpson's paradox is an obstacle to establishing a probabilistic association between two events $a_1$ and $a_2$, given the third (lurking) random variable $B$. We focus on scenarios when the random variables $A$ (which combines $a_1$, $a_2$, and their complements) and $B$ have a common cause $C$ that need not be observed. Alternatively, we can assume that $C$ screens out $A$ from $B$. For such cases, the correct association between $a_1$ and $a_2$ is to be defined via conditioning over $C$. This set-up generalizes the original Simpson's paradox. Now its two contradicting options simply refer to two particular and different causes $C$. We show that if $B$ and $C$ are binary and $A$ is quaternary (the minimal and the most widespread situation for valid Simpson's paradox), the conditioning over any binary common cause $C$ establishes the same direction of the association between $a_1$ and $a_2$ as the conditioning over $B$ in the original formulation of the paradox. Thus, for the minimal common cause, one should choose the option of Simpson's paradox that assumes conditioning over $B$ and not its marginalization. For tertiary (unobserved) common causes $C$ all three options of Simpson's paradox become possible (i.e. marginalized, conditional, and none of them), and one needs prior information on $C$ to choose the right option.
Activation Patching is a method of directly computing causal attributions of behavior to model components. However, applying it exhaustively requires a sweep with cost scaling linearly in the number of model components, which can be prohibitively expensive for SoTA Large Language Models (LLMs). We investigate Attribution Patching (AtP), a fast gradient-based approximation to Activation Patching and find two classes of failure modes of AtP which lead to significant false negatives. We propose a variant of AtP called AtP*, with two changes to address these failure modes while retaining scalability. We present the first systematic study of AtP and alternative methods for faster activation patching and show that AtP significantly outperforms all other investigated methods, with AtP* providing further significant improvement. Finally, we provide a method to bound the probability of remaining false negatives of AtP* estimates.
Hundreds of millions of people now interact with language models, with uses ranging from serving as a writing aid to informing hiring decisions. Yet these language models are known to perpetuate systematic racial prejudices, making their judgments biased in problematic ways about groups like African Americans. While prior research has focused on overt racism in language models, social scientists have argued that racism with a more subtle character has developed over time. It is unknown whether this covert racism manifests in language models. Here, we demonstrate that language models embody covert racism in the form of dialect prejudice: we extend research showing that Americans hold raciolinguistic stereotypes about speakers of African American English and find that language models have the same prejudice, exhibiting covert stereotypes that are more negative than any human stereotypes about African Americans ever experimentally recorded, although closest to the ones from before the civil rights movement. By contrast, the language models' overt stereotypes about African Americans are much more positive. We demonstrate that dialect prejudice has the potential for harmful consequences by asking language models to make hypothetical decisions about people, based only on how they speak. Language models are more likely to suggest that speakers of African American English be assigned less prestigious jobs, be convicted of crimes, and be sentenced to death. Finally, we show that existing methods for alleviating racial bias in language models such as human feedback training do not mitigate the dialect prejudice, but can exacerbate the discrepancy between covert and overt stereotypes, by teaching language models to superficially conceal the racism that they maintain on a deeper level. Our findings have far-reaching implications for the fair and safe employment of language technology.
The deconfounder was proposed as a method for estimating causal parameters in a context with multiple causes and unobserved confounding. It is based on recovery of a latent variable from the observed causes. We disentangle the causal interpretation from the statistical estimation problem and show that the deconfounder in general estimates adjusted regression target parameters. It does so by outcome regression adjusted for the recovered latent variable termed the substitute. We refer to the general algorithm, stripped of causal assumptions, as substitute adjustment. We give theoretical results to support that substitute adjustment estimates adjusted regression parameters when the regressors are conditionally independent given the latent variable. We also introduce a variant of our substitute adjustment algorithm that estimates an assumption-lean target parameter with minimal model assumptions. We then give finite sample bounds and asymptotic results supporting substitute adjustment estimation in the case where the latent variable takes values in a finite set. A simulation study illustrates finite sample properties of substitute adjustment. Our results support that when the latent variable model of the regressors hold, substitute adjustment is a viable method for adjusted regression.
This paper studies the fundamental limits of availability and throughput for independent and heterogeneous demands of a limited resource. Availability is the probability that the demands are below the capacity of the resource. Throughput is the expected fraction of the resource that is utilized by the demands. We offer a concentration inequality generator that gives lower bounds on feasible availability and throughput pairs with a given capacity and independent but not necessarily identical distributions of up-to-unit demands. We show that availability and throughput cannot both be poor. These bounds are analogous to tail inequalities on sums of independent random variables, but hold throughout the support of the demand distribution. This analysis gives analytically tractable bounds supporting the unit-demand characterization of Chawla, Devanur, and Lykouris (2023) and generalizes to up-to-unit demands. Our bounds also provide an approach towards improved multi-unit prophet inequalities (Hajiaghayi, Kleinberg, and Sandholm, 2007). They have applications to transaction fee mechanism design (for blockchains) where high availability limits the probability of profitable user-miner coalitions (Chung and Shi, 2023).
Several subjective proposals have been made for interpreting the strength of evidence in likelihood ratios and Bayes factors. I identify a more objective scaling by modelling the effect of evidence on belief. The resulting scale with base 3.73 aligns with previous proposals and may partly explain intuitions.