亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present a new $hp$-version space-time discontinuous Galerkin (dG) finite element method for the numerical approximation of parabolic evolution equations on general spatial meshes consisting of polygonal/polyhedral (polytopic) elements, giving rise to prismatic space-time elements. A key feature of the proposed method is the use of space-time elemental polynomial bases of \emph{total} degree, say $p$, defined in the physical coordinate system, as opposed to standard dG-time-stepping methods whereby spatial elemental bases are tensorized with temporal basis functions. This approach leads to a fully discrete $hp$-dG scheme using less degrees of freedom for each time step, compared to standard dG time-stepping schemes employing tensorized space-time, with acceptable deterioration of the approximation properties. A second key feature of the new space-time dG method is the incorporation of very general spatial meshes consisting of possibly polygonal/polyhedral elements with \emph{arbitrary} number of faces. A priori error bounds are shown for the proposed method in various norms. An extensive comparison among the new space-time dG method, the (standard) tensorized space-time dG methods, the classical dG-time-stepping, and conforming finite element method in space, is presented in a series of numerical experiments.

相關內容

We address the decision problem for a fragment of real analysis involving differentiable functions with continuous first derivatives. The proposed theory, besides the operators of Tarski's theory of reals, includes predicates for comparisons, monotonicity, convexity, and derivative of functions over bounded closed intervals or unbounded intervals. Our decision algorithm is obtained by showing that satisfiable formulae of our theory admit canonical models in which functional variables are interpreted as piecewise exponential functions. These can be implicitly described within the decidable Tarski's theory of reals. Our satisfiability test generalizes previous decidability results not involving derivative operators.

In a Jacobi--Davidson (JD) type method for singular value decomposition (SVD) problems, called JDSVD, a large symmetric and generally indefinite correction equation is solved iteratively at each outer iteration, which constitutes the inner iterations and dominates the overall efficiency of JDSVD. In this paper, a convergence analysis is made on the minimal residual (MINRES) method for the correction equation. Motivated by the results obtained, at each outer iteration a new correction equation is derived that extracts useful information from current subspaces to construct effective preconditioners for the correction equation and is proven to retain the same convergence of outer iterations of JDSVD.The resulting method is called inner preconditioned JDSVD (IPJDSVD) method; it is also a new JDSVD method, and any viable preconditioner for the correction equations in JDSVD is straightforwardly applicable to those in IPJDSVD. Convergence results show that MINRES for the new correction equation can converge much faster when there is a cluster of singular values closest to a given target. A new thick-restart IPJDSVD algorithm with deflation and purgation is proposed that simultaneously accelerates the outer and inner convergence of the standard thick-restart JDSVD and computes several singular triplets. Numerical experiments justify the theory and illustrate the considerable superiority of IPJDSVD to JDSVD, and demonstrate that a similar two-stage IPJDSVD algorithm substantially outperforms the most advanced PRIMME\_SVDS software nowadays for computing the smallest singular triplets.

Accelerated failure time (AFT) models are frequently used to model survival data, providing a direct quantification of the relationship between event times and covariates. These models allow for the acceleration or deceleration of failure times through a multiplicative factor that accounts for the effect of covariates. While existing literature provides numerous methods for fitting AFT models with time-fixed covariates, adapting these approaches to scenarios involving both time-varying covariates and partly interval-censored data remains challenging. Motivated by a randomised clinical trial dataset on advanced melanoma patients, we propose a maximum penalised likelihood approach for fitting a semiparametric AFT model to survival data with partly interval-censored failure times. This method also accommodates both time-fixed and time-varying covariates. We utilise Gaussian basis functions to construct a smooth approximation of the non-parametric baseline hazard and fit the model using a constrained optimisation approach. The effectiveness of our method is demonstrated through extensive simulations. Finally, we illustrate the relevance of our approach by applying it to a dataset from a randomised clinical trial involving patients with advanced melanoma.

This work presents a numerical analysis of a Discontinuous Galerkin (DG) method for a transformed master equation modeling an open quantum system: a quantum sub-system interacting with a noisy environment. It is shown that the presented transformed master equation has a reduced computational cost in comparison to a Wigner-Fokker-Planck model of the same system for the general case of non-harmonic potentials via DG schemes. Specifics of a Discontinuous Galerkin (DG) numerical scheme adequate for the system of convection-diffusion equations obtained for our Lindblad master equation in position basis are presented. This lets us solve computationally the transformed system of interest modeling our open quantum system problem. The benchmark case of a harmonic potential is then presented, for which the numerical results are compared against the analytical steady-state solution of this problem. Two non-harmonic cases are then presented: the linear and quartic potentials are modeled via our DG framework, for which we show our numerical results.

We develop a class of functions Omega_N(x; mu, nu) in N-dimensional space concentrated around a spherical shell of the radius mu and such that, being convoluted with an isotropic Gaussian function, these functions do not change their expression but only a value of its 'width' parameter, nu. Isotropic Gaussian functions are a particular case of Omega_N(x; mu, nu) corresponding to mu = 0. Due to their features, these functions are an efficient tool to build approximations to smooth and continuous spherically-symmetric functions including oscillating ones. Atomic images in limited-resolution maps of the electron density, electrostatic scattering potential and other scalar fields studied in physics, chemistry, biology, and other natural sciences are examples of such functions. We give simple analytic expressions of Omega_N(x; mu, nu) for N = 1, 2, 3 and analyze properties of these functions. Representation of oscillating functions by a sum of Omega_N(x; mu, nu) allows calculating distorted maps for the same cost as the respective theoretical fields. We give practical examples of such representation for the interference functions of the uniform unit spheres for N = 1, 2, 3 that define the resolution of the respective images. Using the chain rule and analytic expressions of the Omega_N(x; mu, nu) derivatives makes simple refinement of parameters of the models which describe these fields.

We propose and analyse a novel, fully discrete numerical algorithm for the approximation of the generalised Stokes system forced by transport noise -- a prototype model for non-Newtonian fluids including turbulence. Utilising the Gradient Discretisation Method, we show that the algorithm is long-term stable for a broad class of particular Gradient Discretisations. Building on the long-term stability and the derived continuity of the algorithm's solution operator, we construct two sequences of approximate invariant measures. At the moment, each sequence lacks one important feature: either the existence of a limit measure, or the invariance with respect to the discrete semigroup. We derive an abstract condition that merges both properties, recovering the existence of an invariant measure. We provide an example for which invariance and existence hold simultaneously, and characterise the invariant measure completely. We close the article by conducting two numerical experiments that show the influence of transport noise on the dynamics of power-law fluids; in particular, we find that transport noise enhances the dissipation of kinetic energy, the mixing of particles, as well as the size of vortices.

We present a novel class of projected gradient (PG) methods for minimizing a smooth but not necessarily convex function over a convex compact set. We first provide a novel analysis of the "vanilla" PG method, achieving the best-known iteration complexity for finding an approximate stationary point of the problem. We then develop an "auto-conditioned" projected gradient (AC-PG) variant that achieves the same iteration complexity without requiring the input of the Lipschitz constant of the gradient or any line search procedure. The key idea is to estimate the Lipschitz constant using first-order information gathered from the previous iterations, and to show that the error caused by underestimating the Lipschitz constant can be properly controlled. We then generalize the PG methods to the stochastic setting, by proposing a stochastic projected gradient (SPG) method and a variance-reduced stochastic gradient (VR-SPG) method, achieving new complexity bounds in different oracle settings. We also present auto-conditioned stepsize policies for both stochastic PG methods and establish comparable convergence guarantees.

The notion of a non-deterministic logical matrix (where connectives are interpreted as multi-functions) extends the traditional semantics for propositional logics based on logical matrices (where connectives are interpreted as functions). This extension allows for finitely characterizing a much wider class of logics, and has proven decisive in a myriad of recent compositionality results. In this paper we show that the added expressivity brought by non-determinism also has its drawbacks, and in particular that the problem of determining whether two given finite non-deterministic matrices are equivalent, in the sense that they induce the same logic, becomes undecidable. We also discuss some workable sufficient conditions and particular cases, namely regarding rexpansion homomorphisms and bridges to calculi.

We propose a novel diffusion map particle system (DMPS) for generative modeling, based on diffusion maps and Laplacian-adjusted Wasserstein gradient descent (LAWGD). Diffusion maps are used to approximate the generator of the corresponding Langevin diffusion process from samples, and hence to learn the underlying data-generating manifold. On the other hand, LAWGD enables efficient sampling from the target distribution given a suitable choice of kernel, which we construct here via a spectral approximation of the generator, computed with diffusion maps. Our method requires no offline training and minimal tuning, and can outperform other approaches on data sets of moderate dimension.

Gradient Descent (GD) and Conjugate Gradient (CG) methods are among the most effective iterative algorithms for solving unconstrained optimization problems, particularly in machine learning and statistical modeling, where they are employed to minimize cost functions. In these algorithms, tunable parameters, such as step sizes or conjugate parameters, play a crucial role in determining key performance metrics, like runtime and solution quality. In this work, we introduce a framework that models algorithm selection as a statistical learning problem, and thus learning complexity can be estimated by the pseudo-dimension of the algorithm group. We first propose a new cost measure for unconstrained optimization algorithms, inspired by the concept of primal-dual integral in mixed-integer linear programming. Based on the new cost measure, we derive an improved upper bound for the pseudo-dimension of gradient descent algorithm group by discretizing the set of step size configurations. Moreover, we generalize our findings from gradient descent algorithm to the conjugate gradient algorithm group for the first time, and prove the existence a learning algorithm capable of probabilistically identifying the optimal algorithm with a sufficiently large sample size.

北京阿比特科技有限公司