Monte Carlo Tree Search (MCTS) is a sampling best-first method to search for optimal decisions. The MCTS's popularity is based on its extraordinary results in the challenging two-player based game Go, a game considered much harder than Chess and that until very recently was considered infeasible for Artificial Intelligence methods. The success of MCTS depends heavily on how the tree is built and the selection process plays a fundamental role in this. One particular selection mechanism that has proved to be reliable is based on the Upper Confidence Bounds for Trees, commonly referred as UCT. The UCT attempts to nicely balance exploration and exploitation by considering the values stored in the statistical tree of the MCTS. However, some tuning of the MCTS UCT is necessary for this to work well. In this work, we use Evolutionary Algorithms (EAs) to evolve mathematical expressions with the goal to substitute the UCT mathematical expression. We compare our proposed approach, called Evolution Strategy in MCTS (ES-MCTS) against five variants of the MCTS UCT, three variants of the star-minimax family of algorithms as well as a random controller in the Game of Carcassonne. We also use a variant of our proposed EA-based controller, dubbed ES partially integrated in MCTS. We show how the ES-MCTS controller, is able to outperform all these 10 intelligent controllers, including robust MCTS UCT controllers.
The segment number of a planar graph $G$ is the smallest number of line segments needed for a planar straight-line drawing of $G$. Dujmovi\'c, Eppstein, Suderman, and Wood [CGTA'07] introduced this measure for the visual complexity of graphs. There are optimal algorithms for trees and worst-case optimal algorithms for outerplanar graphs, 2-trees, and planar 3-trees. It is known that every cubic triconnected planar $n$-vertex graph (except $K_4$) has segment number $n/2+3$, which is the only known universal lower bound for a meaningful class of planar graphs. We show that every triconnected planar 4-regular graph can be drawn using at most $n+3$ segments. This bound is tight up to an additive constant, improves a previous upper bound of $7n/4+2$ implied by a more general result of Dujmovi\'c et al., and supplements the result for cubic graphs. We also give a simple optimal algorithm for cactus graphs, generalizing the above-mentioned result for trees. We prove the first linear universal lower bounds for outerpaths, maximal outerplanar graphs, 2-trees, and planar 3-trees. This shows that the existing algorithms for these graph classes are constant-factor approximations. For maximal outerpaths, our bound is best possible and can be generalized to circular arcs.
We derive the rate of convergence to Nash equilibria for the payoff-based algorithm proposed in \cite{tat_kam_TAC}. These rates are achieved under the standard assumption of convexity of the game, strong monotonicity and differentiability of the pseudo-gradient. In particular, we show the algorithm achieves $O(\frac{1}{T})$ in the two-point function evaluating setting and $O(\frac{1}{\sqrt{T}})$ in the one-point function evaluation under additional requirement of Lipschitz continuity of the pseudo-gradient. These rates are to our knowledge the best known rates for the corresponding problem classes.
In convex optimization, the problem of finding near-stationary points has not been adequately studied yet, unlike other optimality measures such as the function value. Even in the deterministic case, the optimal method (OGM-G, due to Kim and Fessler (2021)) has just been discovered recently. In this work, we conduct a systematic study of algorithmic techniques for finding near-stationary points of convex finite-sums. Our main contributions are several algorithmic discoveries: (1) we discover a memory-saving variant of OGM-G based on the performance estimation problem approach (Drori and Teboulle, 2014); (2) we design a new accelerated SVRG variant that can simultaneously achieve fast rates for minimizing both the gradient norm and function value; (3) we propose an adaptively regularized accelerated SVRG variant, which does not require the knowledge of some unknown initial constants and achieves near-optimal complexities. We put an emphasis on the simplicity and practicality of the new schemes, which could facilitate future work.
Decision forests, including random forests and gradient boosting trees, remain the leading machine learning methods for many real-world data problems, specifically on tabular data. However, current standard implementations only operate in batch mode, and therefore cannot incrementally update when more data arrive. Several previous works developed streaming trees and ensembles to overcome this limitation. Nonetheless, we found that those state-of-the-art algorithms suffer from a number of drawbacks, including performing very poorly on some problems and requiring a huge amount of memory on others. We therefore developed the simplest possible extension of decision trees we could think of: given new data, simply update existing trees by continuing to grow them, and replace some old trees with new ones to control the total number of trees. On three standard datasets, we illustrate that our approach, Stream Decision Forest (SDF), does not suffer from either of the aforementioned limitations. In a benchmark suite containing 72 classification problems (the OpenML-CC18 data suite), we illustrate that our approach often performs as well, and sometimes better even, than the batch mode random forest algorithm. Thus, we believe SDFs establish a simple standard for streaming trees and forests that could readily be applied to many real-world problems, including those with distribution drift and continual learning.
Ensemble methods based on subsampling, such as random forests, are popular in applications due to their high predictive accuracy. Existing literature views a random forest prediction as an infinite-order incomplete U-statistic to quantify its uncertainty. However, these methods focus on a small subsampling size of each tree, which is theoretically valid but practically limited. This paper develops an unbiased variance estimator based on incomplete U-statistics, which allows the tree size to be comparable with the overall sample size, making statistical inference possible in a broader range of real applications. Simulation results demonstrate that our estimators enjoy lower bias and more accurate confidence interval coverage without additional computational costs. We also propose a local smoothing procedure to reduce the variation of our estimator, which shows improved numerical performance when the number of trees is relatively small. Further, we investigate the ratio consistency of our proposed variance estimator under specific scenarios. In particular, we develop a new "double U-statistic" formulation to analyze the Hoeffding decomposition of the estimator's variance.
We derive information-theoretic generalization bounds for supervised learning algorithms based on the information contained in predictions rather than in the output of the training algorithm. These bounds improve over the existing information-theoretic bounds, are applicable to a wider range of algorithms, and solve two key challenges: (a) they give meaningful results for deterministic algorithms and (b) they are significantly easier to estimate. We show experimentally that the proposed bounds closely follow the generalization gap in practical scenarios for deep learning.
Policy gradient (PG) methods are popular reinforcement learning (RL) methods where a baseline is often applied to reduce the variance of gradient estimates. In multi-agent RL (MARL), although the PG theorem can be naturally extended, the effectiveness of multi-agent PG (MAPG) methods degrades as the variance of gradient estimates increases rapidly with the number of agents. In this paper, we offer a rigorous analysis of MAPG methods by, firstly, quantifying the contributions of the number of agents and agents' explorations to the variance of MAPG estimators. Based on this analysis, we derive the optimal baseline (OB) that achieves the minimal variance. In comparison to the OB, we measure the excess variance of existing MARL algorithms such as vanilla MAPG and COMA. Considering using deep neural networks, we also propose a surrogate version of OB, which can be seamlessly plugged into any existing PG methods in MARL. On benchmarks of Multi-Agent MuJoCo and StarCraft challenges, our OB technique effectively stabilises training and improves the performance of multi-agent PPO and COMA algorithms by a significant margin.
Exploration-exploitation is a powerful and practical tool in multi-agent learning (MAL), however, its effects are far from understood. To make progress in this direction, we study a smooth analogue of Q-learning. We start by showing that our learning model has strong theoretical justification as an optimal model for studying exploration-exploitation. Specifically, we prove that smooth Q-learning has bounded regret in arbitrary games for a cost model that explicitly captures the balance between game and exploration costs and that it always converges to the set of quantal-response equilibria (QRE), the standard solution concept for games under bounded rationality, in weighted potential games with heterogeneous learning agents. In our main task, we then turn to measure the effect of exploration in collective system performance. We characterize the geometry of the QRE surface in low-dimensional MAL systems and link our findings with catastrophe (bifurcation) theory. In particular, as the exploration hyperparameter evolves over-time, the system undergoes phase transitions where the number and stability of equilibria can change radically given an infinitesimal change to the exploration parameter. Based on this, we provide a formal theoretical treatment of how tuning the exploration parameter can provably lead to equilibrium selection with both positive as well as negative (and potentially unbounded) effects to system performance.
Since deep neural networks were developed, they have made huge contributions to everyday lives. Machine learning provides more rational advice than humans are capable of in almost every aspect of daily life. However, despite this achievement, the design and training of neural networks are still challenging and unpredictable procedures. To lower the technical thresholds for common users, automated hyper-parameter optimization (HPO) has become a popular topic in both academic and industrial areas. This paper provides a review of the most essential topics on HPO. The first section introduces the key hyper-parameters related to model training and structure, and discusses their importance and methods to define the value range. Then, the research focuses on major optimization algorithms and their applicability, covering their efficiency and accuracy especially for deep learning networks. This study next reviews major services and toolkits for HPO, comparing their support for state-of-the-art searching algorithms, feasibility with major deep learning frameworks, and extensibility for new modules designed by users. The paper concludes with problems that exist when HPO is applied to deep learning, a comparison between optimization algorithms, and prominent approaches for model evaluation with limited computational resources.
With the rapid increase of large-scale, real-world datasets, it becomes critical to address the problem of long-tailed data distribution (i.e., a few classes account for most of the data, while most classes are under-represented). Existing solutions typically adopt class re-balancing strategies such as re-sampling and re-weighting based on the number of observations for each class. In this work, we argue that as the number of samples increases, the additional benefit of a newly added data point will diminish. We introduce a novel theoretical framework to measure data overlap by associating with each sample a small neighboring region rather than a single point. The effective number of samples is defined as the volume of samples and can be calculated by a simple formula $(1-\beta^{n})/(1-\beta)$, where $n$ is the number of samples and $\beta \in [0,1)$ is a hyperparameter. We design a re-weighting scheme that uses the effective number of samples for each class to re-balance the loss, thereby yielding a class-balanced loss. Comprehensive experiments are conducted on artificially induced long-tailed CIFAR datasets and large-scale datasets including ImageNet and iNaturalist. Our results show that when trained with the proposed class-balanced loss, the network is able to achieve significant performance gains on long-tailed datasets.