亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This study explores a pick-and-toss (PT) as an alternative to pick-and-place (PP), allowing a robot to extend its range and improve task efficiency. Although PT boosts efficiency in object arrangement, the placement environment critically affects the success of tossing. To achieve accurate and efficient object arrangement, we suggest choosing between PP and PT based on task difficulty estimated from the placement environment. Our method simultaneously learns the tossing motion through self-supervised learning and the task determination policy via brute-force search. Experimental results validate the proposed method through simulations and real-world tests on various rectangular object arrangements.

相關內容

Time-evolving graphs arise frequently when modeling complex dynamical systems such as social networks, traffic flow, and biological processes. Developing techniques to identify and analyze communities in these time-varying graph structures is an important challenge. In this work, we generalize existing spectral clustering algorithms from static to dynamic graphs using canonical correlation analysis (CCA) to capture the temporal evolution of clusters. Based on this extended canonical correlation framework, we define the spatio-temporal graph Laplacian and investigate its spectral properties. We connect these concepts to dynamical systems theory via transfer operators, and illustrate the advantages of our method on benchmark graphs by comparison with existing methods. We show that the spatio-temporal graph Laplacian allows for a clear interpretation of cluster structure evolution over time for directed and undirected graphs.

Humanoid robots are envisioned as embodied intelligent agents capable of performing a wide range of human-level loco-manipulation tasks, particularly in scenarios requiring strenuous and repetitive labor. However, learning these skills is challenging due to the high degrees of freedom of humanoid robots, and collecting sufficient training data for humanoid is a laborious process. Given the rapid introduction of new humanoid platforms, a cross-embodiment framework that allows generalizable skill transfer is becoming increasingly critical. To address this, we propose a transferable framework that reduces the data bottleneck by using a unified digital human model as a common prototype and bypassing the need for re-training on every new robot platform. The model learns behavior primitives from human demonstrations through adversarial imitation, and the complex robot structures are decomposed into functional components, each trained independently and dynamically coordinated. Task generalization is achieved through a human-object interaction graph, and skills are transferred to different robots via embodiment-specific kinematic motion retargeting and dynamic fine-tuning. Our framework is validated on five humanoid robots with diverse configurations, demonstrating stable loco-manipulation and highlighting its effectiveness in reducing data requirements and increasing the efficiency of skill transfer across platforms.

Due to the sensitivity of data, Federated Learning (FL) is employed to enable distributed machine learning while safeguarding data privacy and accommodating the requirements of various devices. However, in the context of semi-decentralized FL, clients' communication and training states are dynamic. This variability arises from local training fluctuations, heterogeneous data distributions, and intermittent client participation. Most existing studies primarily focus on stable client states, neglecting the dynamic challenges inherent in real-world scenarios. To tackle this issue, we propose a TRust-Aware clIent scheduLing mechanism called TRAIL, which assesses client states and contributions, enhancing model training efficiency through selective client participation. We focus on a semi-decentralized FL framework where edge servers and clients train a shared global model using unreliable intra-cluster model aggregation and inter-cluster model consensus. First, we propose an adaptive hidden semi-Markov model to estimate clients' communication states and contributions. Next, we address a client-server association optimization problem to minimize global training loss. Using convergence analysis, we propose a greedy client scheduling algorithm. Finally, our experiments conducted on real-world datasets demonstrate that TRAIL outperforms state-of-the-art baselines, achieving an improvement of 8.7% in test accuracy and a reduction of 15.3% in training loss.

Quantum computing promises to revolutionize various fields, yet the execution of quantum programs necessitates an effective compilation process. This involves strategically mapping quantum circuits onto the physical qubits of a quantum processor. The qubits' arrangement, or topology, is pivotal to the circuit's performance, a factor that often defies traditional heuristic or manual optimization methods due to its complexity. In this study, we introduce a novel approach leveraging reinforcement learning to dynamically tailor qubit topologies to the unique specifications of individual quantum circuits, guiding algorithm-driven quantum processor topology design for reducing the depth of mapped circuit, which is particularly critical for the output accuracy on noisy quantum processors. Our method marks a significant departure from previous methods that have been constrained to mapping circuits onto a fixed processor topology. Experiments demonstrate that we have achieved notable enhancements in circuit performance, with a minimum of 20\% reduction in circuit depth in 60\% of the cases examined, and a maximum enhancement of up to 46\%. Furthermore, the pronounced benefits of our approach in reducing circuit depth become increasingly evident as the scale of the quantum circuits increases, exhibiting the scalability of our method in terms of problem size. This work advances the co-design of quantum processor architecture and algorithm mapping, offering a promising avenue for future research and development in the field.

In robotics, coordinating a group of robots is an essential task. This work presents the communication-constrained multi-agent multi-goal path planning problem and proposes a graph-search based algorithm to address this task. Given a fleet of robots, an environment represented by a weighted graph, and a sequence of goals, the aim is to visit all the goals without breaking the communication constraints between the agents, minimizing the completion time. The resulting paths produced by our approach show how the agents can coordinate their individual paths, not only with respect to the next goal but also with respect to all future goals, all the time keeping the communication within the fleet intact.

Adversarial attacks pose significant challenges in 3D object recognition, especially in scenarios involving multi-view analysis where objects can be observed from varying angles. This paper introduces View-Invariant Adversarial Perturbations (VIAP), a novel method for crafting robust adversarial examples that remain effective across multiple viewpoints. Unlike traditional methods, VIAP enables targeted attacks capable of manipulating recognition systems to classify objects as specific, pre-determined labels, all while using a single universal perturbation. Leveraging a dataset of 1,210 images across 121 diverse rendered 3D objects, we demonstrate the effectiveness of VIAP in both targeted and untargeted settings. Our untargeted perturbations successfully generate a singular adversarial noise robust to 3D transformations, while targeted attacks achieve exceptional results, with top-1 accuracies exceeding 95% across various epsilon values. These findings highlight VIAPs potential for real-world applications, such as testing the robustness of 3D recognition systems. The proposed method sets a new benchmark for view-invariant adversarial robustness, advancing the field of adversarial machine learning for 3D object recognition.

The development of autonomous agents which can interact with other agents to accomplish a given task is a core area of research in artificial intelligence and machine learning. Towards this goal, the Autonomous Agents Research Group develops novel machine learning algorithms for autonomous systems control, with a specific focus on deep reinforcement learning and multi-agent reinforcement learning. Research problems include scalable learning of coordinated agent policies and inter-agent communication; reasoning about the behaviours, goals, and composition of other agents from limited observations; and sample-efficient learning based on intrinsic motivation, curriculum learning, causal inference, and representation learning. This article provides a broad overview of the ongoing research portfolio of the group and discusses open problems for future directions.

Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which can incur drifted global models that are slow to converge. Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users, other than directly averaging their model parameters. This approach, however, depends on a proxy dataset, making it impractical unless such a prerequisite is satisfied. Moreover, the ensemble knowledge is not fully utilized to guide local model learning, which may in turn affect the quality of the aggregated model. Inspired by the prior art, we propose a data-free knowledge distillation} approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner, which is then broadcasted to users, regulating local training using the learned knowledge as an inductive bias. Empirical studies powered by theoretical implications show that, our approach facilitates FL with better generalization performance using fewer communication rounds, compared with the state-of-the-art.

Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis.

北京阿比特科技有限公司