亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Mentions of new concepts appear regularly in texts and require automated approaches to harvest and place them into Knowledge Bases (KB), e.g., ontologies and taxonomies. Existing datasets suffer from three issues, (i) mostly assuming that a new concept is pre-discovered and cannot support out-of-KB mention discovery; (ii) only using the concept label as the input along with the KB and thus lacking the contexts of a concept label; and (iii) mostly focusing on concept placement w.r.t a taxonomy of atomic concepts, instead of complex concepts, i.e., with logical operators. To address these issues, we propose a new benchmark, adapting MedMentions dataset (PubMed abstracts) with SNOMED CT versions in 2014 and 2017 under the Diseases sub-category and the broader categories of Clinical finding, Procedure, and Pharmaceutical / biologic product. We provide usage on the evaluation with the dataset for out-of-KB mention discovery and concept placement, adapting recent Large Language Model based methods.

相關內容

數據集,又稱為資料集、數據集合或資料集合,是一種由數據所組成的集合。
 Data set(或dataset)是一個數據的集合,通常以表格形式出現。每一列代表一個特定變量。每一行都對應于某一成員的數據集的問題。它列出的價值觀為每一個變量,如身高和體重的一個物體或價值的隨機數。每個數值被稱為數據資料。對應于行數,該數據集的數據可能包括一個或多個成員。

Deep ensembles are capable of achieving state-of-the-art results in classification and out-of-distribution (OOD) detection. However, their effectiveness is limited due to the homogeneity of learned patterns within ensembles. To overcome this issue, our study introduces Saliency Diversified Deep Ensemble (SDDE), a novel approach that promotes diversity among ensemble members by leveraging saliency maps. Through incorporating saliency map diversification, our method outperforms conventional ensemble techniques and improves calibration in multiple classification and OOD detection tasks. In particular, the proposed method achieves state-of-the-art OOD detection quality, calibration, and accuracy on multiple benchmarks, including CIFAR10/100 and large-scale ImageNet datasets.

Large language models (large LMs) are increasingly trained on massive codebases and used to generate code. However, LMs lack awareness of security and are found to frequently produce unsafe code. This work studies the security of LMs along two important axes: (i) security hardening, which aims to enhance LMs' reliability in generating secure code, and (ii) adversarial testing, which seeks to evaluate LMs' security at an adversarial standpoint. We address both of these by formulating a new security task called controlled code generation. The task is parametric and takes as input a binary property to guide the LM to generate secure or unsafe code, while preserving the LM's capability of generating functionally correct code. We propose a novel learning-based approach called SVEN to solve this task. SVEN leverages property-specific continuous vectors to guide program generation towards the given property, without modifying the LM's weights. Our training procedure optimizes these continuous vectors by enforcing specialized loss terms on different regions of code, using a high-quality dataset carefully curated by us. Our extensive evaluation shows that SVEN is highly effective in achieving strong security control. For instance, a state-of-the-art CodeGen LM with 2.7B parameters generates secure code for 59.1% of the time. When we employ SVEN to perform security hardening (or adversarial testing) on this LM, the ratio is significantly boosted to 92.3% (or degraded to 36.8%). Importantly, SVEN closely matches the original LMs in functional correctness.

We evaluate the ability of contemporary large language models (LLMs) to perform argumentative reasoning. We frame our experiments in terms of the argument mining (AM) and argument pair extraction (APE) tasks, and evaluate their ability to perform reasoning at increasing levels of abstraction in the input and output representations (e.g., arbitrary label sets, semantic graphs). We find that, although LLMs are able to match or surpass the state-of-the-art in AM and APE, their argumentative reasoning performance is very dependent on the input and output representation. We also find an "exemplar effect", where too many exemplars increasingly become detrimental for task performance, and about 4-5 being the optimal amount. Neither result extends to chain-of-thought (CoT) prompting: we find the exemplar effect to be nullified, and our results suggest that CoT allows for better performance under ill-conditioned problems. We hope that the work reported contributes to the improvement of argumentative reasoning in LLMs.

Recently, Locate-Then-Edit paradigm has emerged as one of the main approaches in changing factual knowledge stored in the Language models. However, there is a lack of research on whether present locating methods can pinpoint the exact parameters embedding the desired knowledge. Moreover, although many researchers have questioned the validity of locality hypothesis of factual knowledge, no method is provided to test the a hypothesis for more in-depth discussion and research. Therefore, we introduce KLoB, a benchmark examining three essential properties that a reliable knowledge locating method should satisfy. KLoB can serve as a benchmark for evaluating existing locating methods in language models, and can contributes a method to reassessing the validity of locality hypothesis of factual knowledge. Our is publicly available at \url{//github.com/juyiming/KLoB}.

Cloud computing platforms are progressively adopting Field Programmable Gate Arrays to deploy specialized hardware accelerators for specific computational tasks. However, the security of FPGA-based bitstream for Intellectual Property, IP cores from unauthorized interception in cloud environments remains a prominent concern. Existing methodologies for protection of such bitstreams possess several limitations, such as requiring a large number of keys, tying bitstreams to specific FPGAs, and relying on trusted third parties. This paper proposes Aggregate Encryption and Individual Decryption, a cryptosystem based on key aggregation to enhance the security of FPGA-based bitstream for IP cores and to address the pitfalls of previous related works. In our proposed scheme, IP providers can encrypt their bitstreams with a single key for a set S of FPGA boards, with which the bitstreams can directly be decrypted on any of the FPGA boards in S. Aggregate encryption of the key is performed in a way which ensures that the key can solely be obtained onboard through individual decryption employing the board's private key, thus facilitating secure key provisioning. The proposed cryptosystem is evaluated mainly on Zynq FPGAs. The outcomes demonstrate that our cryptosystem not only outperforms existing techniques with respect to resource, time and energy significantly but also upholds robust security assurances.

Privacy policies outline the data practices of Online Social Networks (OSN) to comply with privacy regulations such as the EU-GDPR and CCPA. Several ontologies for modeling privacy regulations, policies, and compliance have emerged in recent years. However, they are limited in various ways: (1) they specifically model what is required of privacy policies according to one specific privacy regulation such as GDPR; (2) they provide taxonomies of concepts but are not sufficiently axiomatized to afford automated reasoning with them; and (3) they do not model data practices of privacy policies in sufficient detail to allow assessing the transparency of policies. This paper presents an OWL Ontology for Privacy Policies of OSNs, OPPO, that aims to fill these gaps by formalizing detailed data practices from OSNS' privacy policies. OPPO is grounded in BFO, IAO, OMRSE, and OBI, and its design is guided by the use case of representing and reasoning over the content of OSNs' privacy policies and evaluating policies' transparency in greater detail.

Deep Learning algorithms have achieved the state-of-the-art performance for Image Classification and have been used even in security-critical applications, such as biometric recognition systems and self-driving cars. However, recent works have shown those algorithms, which can even surpass the human capabilities, are vulnerable to adversarial examples. In Computer Vision, adversarial examples are images containing subtle perturbations generated by malicious optimization algorithms in order to fool classifiers. As an attempt to mitigate these vulnerabilities, numerous countermeasures have been constantly proposed in literature. Nevertheless, devising an efficient defense mechanism has proven to be a difficult task, since many approaches have already shown to be ineffective to adaptive attackers. Thus, this self-containing paper aims to provide all readerships with a review of the latest research progress on Adversarial Machine Learning in Image Classification, however with a defender's perspective. Here, novel taxonomies for categorizing adversarial attacks and defenses are introduced and discussions about the existence of adversarial examples are provided. Further, in contrast to exisiting surveys, it is also given relevant guidance that should be taken into consideration by researchers when devising and evaluating defenses. Finally, based on the reviewed literature, it is discussed some promising paths for future research.

Many tasks in natural language processing can be viewed as multi-label classification problems. However, most of the existing models are trained with the standard cross-entropy loss function and use a fixed prediction policy (e.g., a threshold of 0.5) for all the labels, which completely ignores the complexity and dependencies among different labels. In this paper, we propose a meta-learning method to capture these complex label dependencies. More specifically, our method utilizes a meta-learner to jointly learn the training policies and prediction policies for different labels. The training policies are then used to train the classifier with the cross-entropy loss function, and the prediction policies are further implemented for prediction. Experimental results on fine-grained entity typing and text classification demonstrate that our proposed method can obtain more accurate multi-label classification results.

We introduce a new language representation model called BERT, which stands for Bidirectional Encoder Representations from Transformers. Unlike recent language representation models, BERT is designed to pre-train deep bidirectional representations by jointly conditioning on both left and right context in all layers. As a result, the pre-trained BERT representations can be fine-tuned with just one additional output layer to create state-of-the-art models for a wide range of tasks, such as question answering and language inference, without substantial task-specific architecture modifications. BERT is conceptually simple and empirically powerful. It obtains new state-of-the-art results on eleven natural language processing tasks, including pushing the GLUE benchmark to 80.4% (7.6% absolute improvement), MultiNLI accuracy to 86.7 (5.6% absolute improvement) and the SQuAD v1.1 question answering Test F1 to 93.2 (1.5% absolute improvement), outperforming human performance by 2.0%.

Many natural language processing tasks solely rely on sparse dependencies between a few tokens in a sentence. Soft attention mechanisms show promising performance in modeling local/global dependencies by soft probabilities between every two tokens, but they are not effective and efficient when applied to long sentences. By contrast, hard attention mechanisms directly select a subset of tokens but are difficult and inefficient to train due to their combinatorial nature. In this paper, we integrate both soft and hard attention into one context fusion model, "reinforced self-attention (ReSA)", for the mutual benefit of each other. In ReSA, a hard attention trims a sequence for a soft self-attention to process, while the soft attention feeds reward signals back to facilitate the training of the hard one. For this purpose, we develop a novel hard attention called "reinforced sequence sampling (RSS)", selecting tokens in parallel and trained via policy gradient. Using two RSS modules, ReSA efficiently extracts the sparse dependencies between each pair of selected tokens. We finally propose an RNN/CNN-free sentence-encoding model, "reinforced self-attention network (ReSAN)", solely based on ReSA. It achieves state-of-the-art performance on both Stanford Natural Language Inference (SNLI) and Sentences Involving Compositional Knowledge (SICK) datasets.

北京阿比特科技有限公司