Kernel-weighted test statistics have been widely used in a variety of settings including non-stationary regression, inference on propensity score and panel data models. We develop the limit theory for a kernel-based specification test of a parametric conditional mean when the law of the regressors may not be absolutely continuous to the Lebesgue measure and is contaminated with singular components. This result is of independent interest and may be useful in other applications that utilize kernel smoothed U-statistics. Simulations illustrate the non-trivial impact of the distribution of the conditioning variables on the power properties of the test statistic.
Support Vector Machines (SVM) have gathered significant acclaim as classifiers due to their successful implementation of Statistical Learning Theory. However, in the context of multiclass and multilabel settings, the reliance on vector-based formulations in existing SVM-based models poses limitations regarding flexibility and ease of incorporating additional terms to handle specific challenges. To overcome these limitations, our research paper focuses on introducing a matrix formulation for SVM that effectively addresses these constraints. By employing the Accelerated Gradient Descent method in the dual, we notably enhance the efficiency of solving the Matrix-SVM problem. Experimental evaluations on multilabel and multiclass datasets demonstrate that Matrix SVM achieves superior time efficacy while delivering similar results to Binary Relevance SVM. Moreover, our matrix formulation unveils crucial insights and advantages that may not be readily apparent in traditional vector-based notations. We emphasize that numerous multilabel models can be viewed as extensions of SVM, with customised modifications to meet specific requirements. The matrix formulation presented in this paper establishes a solid foundation for developing more sophisticated models capable of effectively addressing the distinctive challenges encountered in multilabel learning.
We adopt a maximum-likelihood framework to estimate parameters of a stochastic susceptible-infected-recovered (SIR) model with contact tracing on a rooted random tree. Given the number of detectees per index case, our estimator allows to determine the degree distribution of the random tree as well as the tracing probability. Since we do not discover all infectees via contact tracing, this estimation is non-trivial. To keep things simple and stable, we develop an approximation suited for realistic situations (contract tracing probability small, or the probability for the detection of index cases small). In this approximation, the only epidemiological parameter entering the estimator is $R_0$. The estimator is tested in a simulation study and is furthermore applied to covid-19 contact tracing data from India. The simulation study underlines the efficiency of the method. For the empirical covid-19 data, we compare different degree distributions and perform a sensitivity analysis. We find that particularly a power-law and a negative binomial degree distribution fit the data well and that the tracing probability is rather large. The sensitivity analysis shows no strong dependency of the estimates on the reproduction number. Finally, we discuss the relevance of our findings.
By prior work, it is known that any distributed graph algorithm that finds a maximal matching requires $\Omega(\log^* n)$ communication rounds, while it is possible to find a maximal fractional matching in $O(1)$ rounds in bounded-degree graphs. However, all prior $O(1)$-round algorithms for maximal fractional matching use arbitrarily fine-grained fractional values. In particular, none of them is able to find a half-integral solution, using only values from $\{0, \frac12, 1\}$. We show that the use of fine-grained fractional values is necessary, and moreover we give a complete characterization on exactly how small values are needed: if we consider maximal fractional matching in graphs of maximum degree $\Delta = 2d$, and any distributed graph algorithm with round complexity $T(\Delta)$ that only depends on $\Delta$ and is independent of $n$, we show that the algorithm has to use fractional values with a denominator at least $2^d$. We give a new algorithm that shows that this is also sufficient.
The identification of choice models is crucial for understanding consumer behavior, designing marketing policies, and developing new products. The identification of parametric choice-based demand models, such as the multinomial choice model (MNL), is typically straightforward. However, nonparametric models, which are highly effective and flexible in explaining customer choices, may encounter the curse of the dimensionality and lose their identifiability. For example, the ranking-based model, which is a nonparametric model and designed to mirror the random utility maximization (RUM) principle, is known to be nonidentifiable from the collection of choice probabilities alone. In this paper, we develop a new class of nonparametric models that is not subject to the problem of nonidentifiability. Our model assumes bounded rationality of consumers, which results in symmetric demand cannibalization and intriguingly enables full identification. That is to say, we can uniquely construct the model based on its observed choice probabilities over assortments. We further propose an efficient estimation framework using a combination of column generation and expectation-maximization algorithms. Using a real-world data, we show that our choice model demonstrates competitive prediction accuracy compared to the state-of-the-art benchmarks, despite incorporating the assumption of bounded rationality which could, in theory, limit the representation power of our model.
In this article, we propose two kinds of neural networks inspired by power method and inverse power method to solve linear eigenvalue problems. These neural networks share similar ideas with traditional methods, in which the differential operator is realized by automatic differentiation. The eigenfunction of the eigenvalue problem is learned by the neural network and the iterative algorithms are implemented by optimizing the specially defined loss function. The largest positive eigenvalue, smallest eigenvalue and interior eigenvalues with the given prior knowledge can be solved efficiently. We examine the applicability and accuracy of our methods in the numerical experiments in one dimension, two dimensions and higher dimensions. Numerical results show that accurate eigenvalue and eigenfunction approximations can be obtained by our methods.
Generative adversarial networks (GANs) are one of the most robust and versatile techniques in the field of generative artificial intelligence. In this work, we report on an application of GANs in the domain of synthetic spectral data generation, offering a solution to the scarcity of data found in various scientific contexts. We demonstrate the proposed approach by applying it to an illustrative problem within the realm of near-field radiative heat transfer involving a multilayered hyperbolic metamaterial. We find that a successful generation of spectral data requires two modifications to conventional GANs: (i) the introduction of Wasserstein GANs (WGANs) to avoid mode collapse, and, (ii) the conditioning of WGANs to obtain accurate labels for the generated data. We show that a simple feed-forward neural network (FFNN), when augmented with data generated by a CWGAN, enhances significantly its performance under conditions of limited data availability, demonstrating the intrinsic value of CWGAN data augmentation beyond simply providing larger datasets. In addition, we show that CWGANs can act as a surrogate model with improved performance in the low-data regime with respect to simple FFNNs. Overall, this work highlights the potential of generative machine learning algorithms in scientific applications beyond image generation and optimization.
Choice Modeling is at the core of many economics, operations, and marketing problems. In this paper, we propose a fundamental characterization of choice functions that encompasses a wide variety of extant choice models. We demonstrate how nonparametric estimators like neural nets can easily approximate such functionals and overcome the curse of dimensionality that is inherent in the non-parametric estimation of choice functions. We demonstrate through extensive simulations that our proposed functionals can flexibly capture underlying consumer behavior in a completely data-driven fashion and outperform traditional parametric models. As demand settings often exhibit endogenous features, we extend our framework to incorporate estimation under endogenous features. Further, we also describe a formal inference procedure to construct valid confidence intervals on objects of interest like price elasticity. Finally, to assess the practical applicability of our estimator, we utilize a real-world dataset from S. Berry, Levinsohn, and Pakes (1995). Our empirical analysis confirms that the estimator generates realistic and comparable own- and cross-price elasticities that are consistent with the observations reported in the existing literature.
We consider a persuasion problem between a sender and a receiver whose utility may be nonlinear in her belief; we call such receivers risk-conscious. Such utility models arise when the receiver exhibits systematic biases away from expected-utility-maximization, such as uncertainty aversion (e.g., from sensitivity to the variance of the waiting time for a service). Due to this nonlinearity, the standard approach to finding the optimal persuasion mechanism using revelation principle fails. To overcome this difficulty, we use the underlying geometry of the problem to develop a convex optimization framework to find the optimal persuasion mechanism. We define the notion of full persuasion and use our framework to characterize conditions under which full persuasion can be achieved. We use our approach to study binary persuasion, where the receiver has two actions and the sender strictly prefers one of them at every state. Under a convexity assumption, we show that the binary persuasion problem reduces to a linear program, and establish a canonical set of signals where each signal either reveals the state or induces in the receiver uncertainty between two states. Finally, we discuss the broader applicability of our methods to more general contexts, and illustrate our methodology by studying information sharing of waiting times in service systems.
In the realm of software applications in the transportation industry, Domain-Specific Languages (DSLs) have enjoyed widespread adoption due to their ease of use and various other benefits. With the ceaseless progress in computer performance and the rapid development of large-scale models, the possibility of programming using natural language in specified applications - referred to as Application-Specific Natural Language (ASNL) - has emerged. ASNL exhibits greater flexibility and freedom, which, in turn, leads to an increase in computational complexity for parsing and a decrease in processing performance. To tackle this issue, our paper advances a design for an intermediate representation (IR) that caters to ASNL and can uniformly process transportation data into graph data format, improving data processing performance. Experimental comparisons reveal that in standard data query operations, our proposed IR design can achieve a speed improvement of over forty times compared to direct usage of standard XML format data.
Sufficient training data is normally required to train deeply learned models. However, the number of pedestrian images per ID in person re-identification (re-ID) datasets is usually limited, since manually annotations are required for multiple camera views. To produce more data for training deeply learned models, generative adversarial network (GAN) can be leveraged to generate samples for person re-ID. However, the samples generated by vanilla GAN usually do not have labels. So in this paper, we propose a virtual label called Multi-pseudo Regularized Label (MpRL) and assign it to the generated images. With MpRL, the generated samples will be used as supplementary of real training data to train a deep model in a semi-supervised learning fashion. Considering data bias between generated and real samples, MpRL utilizes different contributions from predefined training classes. The contribution-based virtual labels are automatically assigned to generated samples to reduce ambiguous prediction in training. Meanwhile, MpRL only relies on predefined training classes without using extra classes. Furthermore, to reduce over-fitting, a regularized manner is applied to MpRL to regularize the learning process. To verify the effectiveness of MpRL, two state-of-the-art convolutional neural networks (CNNs) are adopted in our experiments. Experiments demonstrate that by assigning MpRL to generated samples, we can further improve the person re-ID performance on three datasets i.e., Market-1501, DukeMTMCreID, and CUHK03. The proposed method obtains +6.29%, +6.30% and +5.58% improvements in rank-1 accuracy over a strong CNN baseline respectively, and outperforms the state-of-the- art methods.