Building on statistical foundations laid by Neyman [1923] a century ago, a growing literature focuses on problems of causal inference that arise in the context of randomized experiments where the target of inference is the average treatment effect in a finite population and random assignment determines which subjects are allocated to one of the experimental conditions. In this framework, variances of average treatment effect estimators remain unidentified because they depend on the covariance between treated and untreated potential outcomes, which are never jointly observed. Aronow et al. [2014] provide an estimator for the variance of the difference-in-means estimator that is asymptotically sharp. In practice, researchers often use some form of covariate adjustment, such as linear regression when estimating the average treatment effect. Here we extend the Aronow et al. [2014] result, providing asymptotically sharp variance bounds for general regression adjustment. We apply these results to linear regression adjustment and show benefits both in a simulation as well as an empirical application.
Large Language Models (LLMs) have shown strong performance in solving mathematical problems, with code-based solutions proving particularly effective. However, the best practice to leverage coding instruction data to enhance mathematical reasoning remains underexplored. This study investigates three key questions: (1) How do different coding styles of mathematical code-based rationales impact LLMs' learning performance? (2) Can general-domain coding instructions improve performance? (3) How does integrating textual rationales with code-based ones during training enhance mathematical reasoning abilities? Our findings reveal that code-based rationales with concise comments, descriptive naming, and hardcoded solutions are beneficial, while improvements from general-domain coding instructions and textual rationales are relatively minor. Based on these insights, we propose CoinMath, a learning strategy designed to enhance mathematical reasoning by diversifying the coding styles of code-based rationales. CoinMath generates a variety of code-based rationales incorporating concise comments, descriptive naming conventions, and hardcoded solutions. Experimental results demonstrate that CoinMath significantly outperforms its baseline model, MAmmoTH, one of the SOTA math LLMs.
We explored in this work the ubiquitous phenomenon of serial scammers, who deploy thousands of addresses to conduct a series of similar Rug Pulls on popular decentralized exchanges (DEXs). We first constructed a list of about 384,000 scammer addresses behind all 1-day Rug Pulls on the two most popular DEXs, Uniswap (Ethereum) and Pancakeswap (BSC), and identified many distinctive scam patterns including star-shaped, chain-shaped, and majority-flow scam clusters. We then proposed an algorithm to build a complete scam network from given scammer addresses, which consists of not only scammer addresses but also supporting addresses including depositors, withdrawers, transferrers, coordinators, and most importantly, wash traders. We note that profit estimations in existing works on Rug Pulls failed to capture the cost of wash trading, leading to inflated figures. Knowing who the wash traders are, we established a more accurate estimate for the true profit of individual scam pools as well as of the entire (serial) scam network by taking into account the wash-trading expenses.
Bias significantly undermines both the accuracy and trustworthiness of machine learning models. To date, one of the strongest biases observed in image classification models is texture bias-where models overly rely on texture information rather than shape information. Yet, existing approaches for measuring and mitigating texture bias have not been able to capture how textures impact model robustness in real-world settings. In this work, we introduce the Texture Association Value (TAV), a novel metric that quantifies how strongly models rely on the presence of specific textures when classifying objects. Leveraging TAV, we demonstrate that model accuracy and robustness are heavily influenced by texture. Our results show that texture bias explains the existence of natural adversarial examples, where over 90% of these samples contain textures that are misaligned with the learned texture of their true label, resulting in confident mispredictions.
Federated averaging (FedAvg) is the most fundamental algorithm in Federated learning (FL). Previous theoretical results assert that FedAvg convergence and generalization degenerate under heterogeneous clients. However, recent empirical results show that FedAvg can perform well in many real-world heterogeneous tasks. These results reveal an inconsistency between FL theory and practice that is not fully explained. In this paper, we show that common heterogeneity measures contribute to this inconsistency based on rigorous convergence analysis. Furthermore, we introduce a new measure \textit{client consensus dynamics} and prove that \textit{FedAvg can effectively handle client heterogeneity when an appropriate aggregation strategy is used}. Building on this theoretical insight, we present a simple and effective FedAvg variant termed FedAWARE. Extensive experiments on three datasets and two modern neural network architectures demonstrate that FedAWARE ensures faster convergence and better generalization in heterogeneous client settings. Moreover, our results show that FedAWARE can significantly enhance the generalization performance of advanced FL algorithms when used as a plug-in module.
In recent years, the integration of federated learning (FL) and recommendation systems (RS), known as Federated Recommendation Systems (FRS), has attracted attention for preserving user privacy by keeping private data on client devices. However, FRS faces inherent limitations such as data heterogeneity and scarcity, due to the privacy requirements of FL and the typical data sparsity issues of RSs. Models like ChatGPT are empowered by the concept of transfer learning and self-supervised learning, so they can be easily applied to the downstream tasks after fine-tuning or prompting. These models, so-called Foundation Models (FM), fouce on understanding the human's intent and perform following their designed roles in the specific tasks, which are widely recognized for producing high-quality content in the image and language domains. Thus, the achievements of FMs inspire the design of FRS and suggest a promising research direction: integrating foundation models to address the above limitations. In this study, we conduct a comprehensive review of FRSs with FMs. Specifically, we: 1) summarise the common approaches of current FRSs and FMs; 2) review the challenges posed by FRSs and FMs; 3) discuss potential future research directions; and 4) introduce some common benchmarks and evaluation metrics in the FRS field. We hope that this position paper provides the necessary background and guidance to explore this interesting and emerging topic.
This survey presents an in-depth exploration of knowledge distillation (KD) techniques within the realm of Large Language Models (LLMs), spotlighting the pivotal role of KD in transferring sophisticated capabilities from proprietary giants such as GPT-4 to accessible, open-source models like LLaMA and Mistral. Amidst the evolving AI landscape, this work elucidates the critical disparities between proprietary and open-source LLMs, demonstrating how KD serves as an essential conduit for imbuing the latter with the former's advanced functionalities and nuanced understandings. Our survey is meticulously structured around three foundational pillars: algorithm, skill, and verticalization -- providing a comprehensive examination of KD mechanisms, the enhancement of specific cognitive abilities, and their practical implications across diverse fields. Crucially, the survey navigates the intricate interplay between data augmentation (DA) and KD, illustrating how DA emerges as a powerful paradigm within the KD framework to bolster LLMs' performance. By leveraging DA to generate context-rich, skill-specific training data, KD transcends traditional boundaries, enabling open-source models to approximate the contextual adeptness, ethical alignment, and deep semantic insights characteristic of their proprietary counterparts. This work aims to provide an insightful guide for researchers and practitioners, offering a detailed overview of current methodologies in knowledge distillation and proposing future research directions. By bridging the gap between proprietary and open-source LLMs, this survey underscores the potential for more accessible, efficient, and sustainable AI solutions, fostering a more inclusive and equitable landscape in AI advancements. An associated Github repository is available at //github.com/Tebmer/Awesome-Knowledge-Distillation-of-LLMs.
In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.
The dominating NLP paradigm of training a strong neural predictor to perform one task on a specific dataset has led to state-of-the-art performance in a variety of applications (eg. sentiment classification, span-prediction based question answering or machine translation). However, it builds upon the assumption that the data distribution is stationary, ie. that the data is sampled from a fixed distribution both at training and test time. This way of training is inconsistent with how we as humans are able to learn from and operate within a constantly changing stream of information. Moreover, it is ill-adapted to real-world use cases where the data distribution is expected to shift over the course of a model's lifetime. The first goal of this thesis is to characterize the different forms this shift can take in the context of natural language processing, and propose benchmarks and evaluation metrics to measure its effect on current deep learning architectures. We then proceed to take steps to mitigate the effect of distributional shift on NLP models. To this end, we develop methods based on parametric reformulations of the distributionally robust optimization framework. Empirically, we demonstrate that these approaches yield more robust models as demonstrated on a selection of realistic problems. In the third and final part of this thesis, we explore ways of efficiently adapting existing models to new domains or tasks. Our contribution to this topic takes inspiration from information geometry to derive a new gradient update rule which alleviate catastrophic forgetting issues during adaptation.
As soon as abstract mathematical computations were adapted to computation on digital computers, the problem of efficient representation, manipulation, and communication of the numerical values in those computations arose. Strongly related to the problem of numerical representation is the problem of quantization: in what manner should a set of continuous real-valued numbers be distributed over a fixed discrete set of numbers to minimize the number of bits required and also to maximize the accuracy of the attendant computations? This perennial problem of quantization is particularly relevant whenever memory and/or computational resources are severely restricted, and it has come to the forefront in recent years due to the remarkable performance of Neural Network models in computer vision, natural language processing, and related areas. Moving from floating-point representations to low-precision fixed integer values represented in four bits or less holds the potential to reduce the memory footprint and latency by a factor of 16x; and, in fact, reductions of 4x to 8x are often realized in practice in these applications. Thus, it is not surprising that quantization has emerged recently as an important and very active sub-area of research in the efficient implementation of computations associated with Neural Networks. In this article, we survey approaches to the problem of quantizing the numerical values in deep Neural Network computations, covering the advantages/disadvantages of current methods. With this survey and its organization, we hope to have presented a useful snapshot of the current research in quantization for Neural Networks and to have given an intelligent organization to ease the evaluation of future research in this area.
We study the problem of incorporating prior knowledge into a deep Transformer-based model,i.e.,Bidirectional Encoder Representations from Transformers (BERT), to enhance its performance on semantic textual matching tasks. By probing and analyzing what BERT has already known when solving this task, we obtain better understanding of what task-specific knowledge BERT needs the most and where it is most needed. The analysis further motivates us to take a different approach than most existing works. Instead of using prior knowledge to create a new training task for fine-tuning BERT, we directly inject knowledge into BERT's multi-head attention mechanism. This leads us to a simple yet effective approach that enjoys fast training stage as it saves the model from training on additional data or tasks other than the main task. Extensive experiments demonstrate that the proposed knowledge-enhanced BERT is able to consistently improve semantic textual matching performance over the original BERT model, and the performance benefit is most salient when training data is scarce.