亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The Automated Audio Captioning (AAC) task aims to describe an audio signal using natural language. To evaluate machine-generated captions, the metrics should take into account audio events, acoustic scenes, paralinguistics, signal characteristics, and other audio information. Traditional AAC evaluation relies on natural language generation metrics like ROUGE and BLEU, image captioning metrics such as SPICE and CIDEr, or Sentence-BERT embedding similarity. However, these metrics only compare generated captions to human references, overlooking the audio signal itself. In this work, we propose MACE (Multimodal Audio-Caption Evaluation), a novel metric that integrates both audio and reference captions for comprehensive audio caption evaluation. MACE incorporates audio information from audio as well as predicted and reference captions and weights it with a fluency penalty. Our experiments demonstrate MACE's superior performance in predicting human quality judgments compared to traditional metrics. Specifically, MACE achieves a 3.28% and 4.36% relative accuracy improvement over the FENSE metric on the AudioCaps-Eval and Clotho-Eval datasets respectively. Moreover, it significantly outperforms all the previous metrics on the audio captioning evaluation task. The metric is opensourced at //github.com/satvik-dixit/mace

相關內容

 AAC(Advanced Audio Coding進階音訊編碼),出現于1997年,基于MPEG-2的音頻編碼技術。

In-context learning (ICL) enables Large Language Models (LLMs) to perform tasks using few demonstrations, facilitating task adaptation when labeled examples are hard to obtain. However, ICL is sensitive to the choice of demonstrations, and it remains unclear which demonstration attributes enable in-context generalization. In this work, we conduct a perturbation study of in-context demonstrations for low-resource Named Entity Detection (NED). Our surprising finding is that in-context demonstrations with partially correct annotated entity mentions can be as effective for task transfer as fully correct demonstrations. Based off our findings, we propose Pseudo-annotated In-Context Learning (PICLe), a framework for in-context learning with noisy, pseudo-annotated demonstrations. PICLe leverages LLMs to annotate many demonstrations in a zero-shot first pass. We then cluster these synthetic demonstrations, sample specific sets of in-context demonstrations from each cluster, and predict entity mentions using each set independently. Finally, we use self-verification to select the final set of entity mentions. We evaluate PICLe on five biomedical NED datasets and show that, with zero human annotation, PICLe outperforms ICL in low-resource settings where limited gold examples can be used as in-context demonstrations.

With rapid advances, generative large language models (LLMs) dominate various Natural Language Processing (NLP) tasks from understanding to reasoning. Yet, language models' inherent vulnerabilities may be exacerbated due to increased accessibility and unrestricted model training on massive data. A malicious adversary may publish poisoned data online and conduct backdoor attacks on the victim LLMs pre-trained on the poisoned data. Backdoored LLMs behave innocuously for normal queries and generate harmful responses when the backdoor trigger is activated. Despite significant efforts paid to LLMs' safety issues, LLMs are still struggling against backdoor attacks. As Anthropic recently revealed, existing safety training strategies, including supervised fine-tuning (SFT) and Reinforcement Learning from Human Feedback (RLHF), fail to revoke the backdoors once the LLM is backdoored during the pre-training stage. In this paper, we present Simulate and Eliminate (SANDE) to erase the undesired backdoored mappings for generative LLMs. We initially propose Overwrite Supervised Fine-tuning (OSFT) for effective backdoor removal when the trigger is known. Then, to handle scenarios where trigger patterns are unknown, we integrate OSFT into our two-stage framework, SANDE. Unlike other works that assume access to cleanly trained models, our safety-enhanced LLMs are able to revoke backdoors without any reference. Consequently, our safety-enhanced LLMs no longer produce targeted responses when the backdoor triggers are activated. We conduct comprehensive experiments to show that our proposed SANDE is effective against backdoor attacks while bringing minimal harm to LLMs' powerful capability.

Recent advances in audio generation have focused on text-to-audio (T2A) and video-to-audio (V2A) tasks. However, T2A or V2A methods cannot generate holistic sounds (onscreen and off-screen). This is because T2A cannot generate sounds aligning with onscreen objects, while V2A cannot generate semantically complete (offscreen sounds missing). In this work, we address the task of holistic audio generation: given a video and a text prompt, we aim to generate both onscreen and offscreen sounds that are temporally synchronized with the video and semantically aligned with text and video. Previous approaches for joint text and video-to-audio generation often suffer from modality bias, favoring one modality over the other. To overcome this limitation, we introduce VinTAGe, a flow-based transformer model that jointly considers text and video to guide audio generation. Our framework comprises two key components: a Visual-Text Encoder and a Joint VT-SiT model. To reduce modality bias and improve generation quality, we employ pretrained uni-modal text-to-audio and video-to-audio generation models for additional guidance. Due to the lack of appropriate benchmarks, we also introduce VinTAGe-Bench, a dataset of 636 video-text-audio pairs containing both onscreen and offscreen sounds. Our comprehensive experiments on VinTAGe-Bench demonstrate that joint text and visual interaction is necessary for holistic audio generation. Furthermore, VinTAGe achieves state-of-the-art results on the VGGSound benchmark. Our source code and pre-trained models will be released. Demo is available at: //www.youtube.com/watch?v=QmqWhUjPkJI.

We introduce EgoSonics, a method to generate semantically meaningful and synchronized audio tracks conditioned on silent egocentric videos. Generating audio for silent egocentric videos could open new applications in virtual reality, assistive technologies, or for augmenting existing datasets. Existing work has been limited to domains like speech, music, or impact sounds and cannot capture the broad range of audio frequencies found in egocentric videos. EgoSonics addresses these limitations by building on the strengths of latent diffusion models for conditioned audio synthesis. We first encode and process paired audio-video data to make them suitable for generation. The encoded data is then used to train a model that can generate an audio track that captures the semantics of the input video. Our proposed SyncroNet builds on top of ControlNet to provide control signals that enables generation of temporally synchronized audio. Extensive evaluations and a comprehensive user study show that our model outperforms existing work in audio quality, and in our proposed synchronization evaluation method. Furthermore, we demonstrate downstream applications of our model in improving video summarization.

Interactive segmentation aims to extract objects of interest from an image based on user-provided clicks. In real-world applications, there is often a need to segment a series of images featuring the same target object. However, existing methods typically process one image at a time, failing to consider the sequential nature of the images. To overcome this limitation, we propose a novel method called Sequence Prompt Transformer (SPT), the first to utilize sequential image information for interactive segmentation. Our model comprises two key components: (1) Sequence Prompt Transformer (SPT) for acquiring information from sequence of images, clicks and masks to improve accurate. (2) Top-k Prompt Selection (TPS) selects precise prompts for SPT to further enhance the segmentation effect. Additionally, we create the ADE20K-Seq benchmark to better evaluate model performance. We evaluate our approach on multiple benchmark datasets and show that our model surpasses state-of-the-art methods across all datasets.

We propose the VLR-Bench, a visual question answering (VQA) benchmark for evaluating vision language models (VLMs) based on retrieval augmented generation (RAG). Unlike existing evaluation datasets for external knowledge-based VQA, the proposed VLR-Bench includes five input passages. This allows testing of the ability to determine which passage is useful for answering a given query, a capability lacking in previous research. In this context, we constructed a dataset of 32,000 automatically generated instruction-following examples, which we denote as VLR-IF. This dataset is specifically designed to enhance the RAG capabilities of VLMs by enabling them to learn how to generate appropriate answers based on input passages. We evaluated the validity of the proposed benchmark and training data and verified its performance using the state-of-the-art Llama3-based VLM, the Llava-Llama-3 model. The proposed VLR-Bench and VLR-IF datasets are publicly available online.

Video question-answering (QA) is a core task in video understanding. Evaluating the quality of video QA and video caption data quality for training video large language models (VideoLLMs) is an essential challenge. Although various methods have been proposed for assessing video caption quality, there remains a lack of dedicated evaluation methods for Video QA. To address this gap, we introduce EVQAScore, a reference-free method that leverages keyword extraction to assess both video caption and video QA data quality. Additionally, we incorporate frame sampling and rescaling techniques to enhance the efficiency and robustness of our evaluation, this enables our score to evaluate the quality of extremely long videos. Our approach achieves state-of-the-art (SOTA) performance (32.8 for Kendall correlation and 42.3 for Spearman correlation, 4.7 and 5.9 higher than the previous method PAC-S++) on the VATEX-EVAL benchmark for video caption evaluation. Furthermore, by using EVQAScore for data selection, we achieved SOTA results with only 12.5\% of the original data volume, outperforming the previous SOTA method PAC-S and 100\% of data.

Large language models (LLMs) have attracted significant attention in recommendation systems. Current LLM-based recommender systems primarily rely on supervised fine-tuning (SFT) to train the model for recommendation tasks. However, relying solely on positive samples limits the model's ability to align with user satisfaction and expectations. To address this, researchers have introduced Direct Preference Optimization (DPO), which explicitly aligns recommendations with user preferences using offline preference ranking data. Despite its advantages, our theoretical analysis reveals that DPO inherently biases the model towards a few items, exacerbating the filter bubble issue and ultimately degrading user experience. In this paper, we propose SPRec, a novel self-play recommendation framework designed to mitigate over-recommendation and improve fairness without requiring additional data or manual intervention. In each self-play iteration, the model undergoes an SFT step followed by a DPO step, treating offline interaction data as positive samples and the predicted outputs from the previous iteration as negative samples. This effectively re-weights the DPO loss function using the model's logits, adaptively suppressing biased items. Extensive experiments on multiple real-world datasets demonstrate SPRec's effectiveness in enhancing recommendation accuracy and addressing fairness concerns.

Since the launch of ChatGPT, a powerful AI Chatbot developed by OpenAI, large language models (LLMs) have made significant advancements in both academia and industry, bringing about a fundamental engineering paradigm shift in many areas. While LLMs are powerful, it is also crucial to best use their power where "prompt'' plays a core role. However, the booming LLMs themselves, including excellent APIs like ChatGPT, have several inherent limitations: 1) temporal lag of training data, and 2) the lack of physical capabilities to perform external actions. Recently, we have observed the trend of utilizing prompt-based tools to better utilize the power of LLMs for downstream tasks, but a lack of systematic literature and standardized terminology, partly due to the rapid evolution of this field. Therefore, in this work, we survey related prompting tools and promote the concept of the "Prompting Framework" (PF), i.e. the framework for managing, simplifying, and facilitating interaction with large language models. We define the lifecycle of the PF as a hierarchical structure, from bottom to top, namely: Data Level, Base Level, Execute Level, and Service Level. We also systematically depict the overall landscape of the emerging PF field and discuss potential future research and challenges. To continuously track the developments in this area, we maintain a repository at //github.com/lxx0628/Prompting-Framework-Survey, which can be a useful resource sharing platform for both academic and industry in this field.

We present Emu, a system that semantically enhances multilingual sentence embeddings. Our framework fine-tunes pre-trained multilingual sentence embeddings using two main components: a semantic classifier and a language discriminator. The semantic classifier improves the semantic similarity of related sentences, whereas the language discriminator enhances the multilinguality of the embeddings via multilingual adversarial training. Our experimental results based on several language pairs show that our specialized embeddings outperform the state-of-the-art multilingual sentence embedding model on the task of cross-lingual intent classification using only monolingual labeled data.

北京阿比特科技有限公司