Binary multirelations can model alternating nondeterminism, for instance, in games or nondeterministically evolving systems interacting with an environment. Such systems can show partial or total functional behaviour at both levels of alternation, so that nondeterministic behaviour may occur only at one level or both levels, or not at all. We study classes of inner and outer partial and total functional multirelations in a multirelational language based on relation algebra and power allegories. While it is known that general multirelations do not form a category, we show that the classes of deterministic multirelations mentioned form categories with respect to Peleg composition from concurrent dynamic logic, and sometimes quantaloids. Some of these are isomorphic to the category of binary relations. We also introduce determinisation maps that approximate multirelations either by binary relations or by deterministic multirelations. Such maps are useful for defining modal operators on multirelations.
Removing information from a machine learning model is a non-trivial task that requires to partially revert the training process. This task is unavoidable when sensitive data, such as credit card numbers or passwords, accidentally enter the model and need to be removed afterwards. Recently, different concepts for machine unlearning have been proposed to address this problem. While these approaches are effective in removing individual data points, they do not scale to scenarios where larger groups of features and labels need to be reverted. In this paper, we propose the first method for unlearning features and labels. Our approach builds on the concept of influence functions and realizes unlearning through closed-form updates of model parameters. It enables to adapt the influence of training data on a learning model retrospectively, thereby correcting data leaks and privacy issues. For learning models with strongly convex loss functions, our method provides certified unlearning with theoretical guarantees. For models with non-convex losses, we empirically show that unlearning features and labels is effective and significantly faster than other strategies.
We study the tangential interpolation problem for a passive transfer function in standard state-space form. We derive new interpolation conditions based on the computation of a deflating subspace associated with a selection of spectral zeros of a parameterized para-Hermitian transfer function. We show that this technique improves the robustness of the low order model and that it can also be applied to non-passive systems, provided they have sufficiently many spectral zeros in the open right half plane. We analyze the accuracy needed for the computation of the deflating subspace, in order to still have a passive lower order model and we derive a novel selection procedure of spectral zeros in order to obtain low order models with a small approximation error.
We consider the problem of computing bounds for causal queries on causal graphs with unobserved confounders and discrete valued observed variables, where identifiability does not hold. Existing non-parametric approaches for computing such bounds use linear programming (LP) formulations that quickly become intractable for existing solvers because the size of the LP grows exponentially in the number of edges in the causal graph. We show that this LP can be significantly pruned, allowing us to compute bounds for significantly larger causal inference problems compared to existing techniques. This pruning procedure allows us to compute bounds in closed form for a special class of problems, including a well-studied family of problems where multiple confounded treatments influence an outcome. We extend our pruning methodology to fractional LPs which compute bounds for causal queries which incorporate additional observations about the unit. We show that our methods provide significant runtime improvement compared to benchmarks in experiments and extend our results to the finite data setting. For causal inference without additional observations, we propose an efficient greedy heuristic that produces high quality bounds, and scales to problems that are several orders of magnitude larger than those for which the pruned LP can be solved.
We introduce a new framework for the analysis of preprocessing routines for parameterized counting problems. Existing frameworks that encapsulate parameterized counting problems permit the usage of exponential (rather than polynomial) time either explicitly or by implicitly reducing the counting problems to enumeration problems. Thus, our framework is the only one in the spirit of classic kernelization (as well as lossy kernelization). Specifically, we define a compression of a counting problem $P$ into a counting problem $Q$ as a pair of polynomial-time procedures: $\mathsf{reduce}$ and $\mathsf{lift}$. Given an instance of $P$, $\mathsf{reduce}$ outputs an instance of $Q$ whose size is bounded by a function $f$ of the parameter, and given the number of solutions to the instance of $Q$, $\mathsf{lift}$ outputs the number of solutions to the instance of $P$. When $P=Q$, compression is termed kernelization, and when $f$ is polynomial, compression is termed polynomial compression. Our technical (and other conceptual) contributions concern both upper bounds and lower bounds.
Hyperproperties extend trace properties to express properties of sets of traces, and they are increasingly popular in specifying various security and performance-related properties in domains such as cyber-physical systems, smart grids, and automotive. This paper introduces a model checking algorithm for a new formalism, HyperTWTL, which extends Time Window Temporal Logic (TWTL) -- a domain-specific formal specification language for robotics, by allowing explicit and simultaneous quantification over multiple execution traces. We present HyperTWTL with both \emph{synchronous} and \emph{asynchronous} semantics, based on the alignment of the timestamps in the traces. Consequently, we demonstrate the application of HyperTWTL in formalizing important information-flow security policies and concurrency for robotics applications. Finally, we propose a model checking algorithm for verifying fragments of HyperTWTL by reducing the problem to a TWTL model checking problem.
Data cohesion, a recently introduced measure inspired by social interactions, uses distance comparisons to assess relative proximity. In this work, we provide a collection of results which can guide the development of cohesion-based methods in exploratory data analysis and human-aided computation. Here, we observe the important role of highly clustered "point-like" sets and the ways in which cohesion allows such sets to take on qualities of a single weighted point. In doing so, we see how cohesion complements metric-adjacent measures of dissimilarity and responds to local density. We conclude by proving that cohesion is the unique function with (i) average value equal to one-half and (ii) the property that the influence of an outlier is proportional to its mass. Properties of cohesion are illustrated with examples throughout.
The concept of causality plays an important role in human cognition . In the past few decades, causal inference has been well developed in many fields, such as computer science, medicine, economics, and education. With the advancement of deep learning techniques, it has been increasingly used in causal inference against counterfactual data. Typically, deep causal models map the characteristics of covariates to a representation space and then design various objective optimization functions to estimate counterfactual data unbiasedly based on the different optimization methods. This paper focuses on the survey of the deep causal models, and its core contributions are as follows: 1) we provide relevant metrics under multiple treatments and continuous-dose treatment; 2) we incorporate a comprehensive overview of deep causal models from both temporal development and method classification perspectives; 3) we assist a detailed and comprehensive classification and analysis of relevant datasets and source code.
Humans perceive the world by concurrently processing and fusing high-dimensional inputs from multiple modalities such as vision and audio. Machine perception models, in stark contrast, are typically modality-specific and optimised for unimodal benchmarks, and hence late-stage fusion of final representations or predictions from each modality (`late-fusion') is still a dominant paradigm for multimodal video classification. Instead, we introduce a novel transformer based architecture that uses `fusion bottlenecks' for modality fusion at multiple layers. Compared to traditional pairwise self-attention, our model forces information between different modalities to pass through a small number of bottleneck latents, requiring the model to collate and condense the most relevant information in each modality and only share what is necessary. We find that such a strategy improves fusion performance, at the same time reducing computational cost. We conduct thorough ablation studies, and achieve state-of-the-art results on multiple audio-visual classification benchmarks including Audioset, Epic-Kitchens and VGGSound. All code and models will be released.
Transformers have achieved great success in many artificial intelligence fields, such as natural language processing, computer vision, and audio processing. Therefore, it is natural to attract lots of interest from academic and industry researchers. Up to the present, a great variety of Transformer variants (a.k.a. X-formers) have been proposed, however, a systematic and comprehensive literature review on these Transformer variants is still missing. In this survey, we provide a comprehensive review of various X-formers. We first briefly introduce the vanilla Transformer and then propose a new taxonomy of X-formers. Next, we introduce the various X-formers from three perspectives: architectural modification, pre-training, and applications. Finally, we outline some potential directions for future research.
Co-evolving time series appears in a multitude of applications such as environmental monitoring, financial analysis, and smart transportation. This paper aims to address the following challenges, including (C1) how to incorporate explicit relationship networks of the time series; (C2) how to model the implicit relationship of the temporal dynamics. We propose a novel model called Network of Tensor Time Series, which is comprised of two modules, including Tensor Graph Convolutional Network (TGCN) and Tensor Recurrent Neural Network (TRNN). TGCN tackles the first challenge by generalizing Graph Convolutional Network (GCN) for flat graphs to tensor graphs, which captures the synergy between multiple graphs associated with the tensors. TRNN leverages tensor decomposition to model the implicit relationships among co-evolving time series. The experimental results on five real-world datasets demonstrate the efficacy of the proposed method.