亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We study the problem of sequentially predicting properties of a probabilistic model and its next outcome over an infinite horizon, with the goal of ensuring that the predictions incur only finitely many errors with probability 1. We introduce a general framework that models such prediction problems, provide general characterizations for the existence of successful prediction rules, and demonstrate the application of these characterizations through several concrete problem setups, including hypothesis testing, online learning, and risk domination. In particular, our characterizations allow us to recover the findings of Dembo and Peres (1994) with simple and elementary proofs, and offer a partial resolution to an open problem posed therein.

相關內容

We propose a material design method via gradient-based optimization on compositions, overcoming the limitations of traditional methods: exhaustive database searches and conditional generation models. It optimizes inputs via backpropagation, aligning the model's output closely with the target property and facilitating the discovery of unlisted materials and precise property determination. Our method is also capable of adaptive optimization under new conditions without retraining. Applying to exploring high-Tc superconductors, we identified potential compositions beyond existing databases and discovered new hydrogen superconductors via conditional optimization. This method is versatile and significantly advances material design by enabling efficient, extensive searches and adaptability to new constraints.

The Bj\"orling problem amounts to the construction of a minimal surface from a real-analytic curve with a given real-analytic normal vector field. We approximate that solution locally by discrete minimal surfaces as special discrete isothermic surfaces (as defined by Bobenko and Pinkall in 1996). The main step in our construction is the approximation of the sought surface's Weierstrass data by discrete conformal maps. We prove that the approximation error is of the order of the square of the mesh size.

Lattices are architected metamaterials whose properties strongly depend on their geometrical design. The analogy between lattices and graphs enables the use of graph neural networks (GNNs) as a faster surrogate model compared to traditional methods such as finite element modelling. In this work, we generate a big dataset of structure-property relationships for strut-based lattices. The dataset is made available to the community which can fuel the development of methods anchored in physical principles for the fitting of fourth-order tensors. In addition, we present a higher-order GNN model trained on this dataset. The key features of the model are (i) SE(3) equivariance, and (ii) consistency with the thermodynamic law of conservation of energy. We compare the model to non-equivariant models based on a number of error metrics and demonstrate its benefits in terms of predictive performance and reduced training requirements. Finally, we demonstrate an example application of the model to an architected material design task. The methods which we developed are applicable to fourth-order tensors beyond elasticity such as piezo-optical tensor etc.

In the present work we use maximum entropy methods to derive several theorems in probabilistic number theory, including a version of the Hardy-Ramanujan Theorem. We also provide a theoretical argument explaining the experimental observations of Y.-H. He about the learnability of primes, and posit that the Erd\H{o}s-Kac law would very unlikely be discovered by current machine learning techniques. Numerical experiments that we perform corroborate our theoretical findings.

The Fisher-Rao distance between two probability distributions of a statistical model is defined as the Riemannian geodesic distance induced by the Fisher information metric. In order to calculate the Fisher-Rao distance in closed-form, we need (1) to elicit a formula for the Fisher-Rao geodesics, and (2) to integrate the Fisher length element along those geodesics. We consider several numerically robust approximation and bounding techniques for the Fisher-Rao distances: First, we report generic upper bounds on Fisher-Rao distances based on closed-form 1D Fisher-Rao distances of submodels. Second, we describe several generic approximation schemes depending on whether the Fisher-Rao geodesics or pregeodesics are available in closed-form or not. In particular, we obtain a generic method to guarantee an arbitrarily small additive error on the approximation provided that Fisher-Rao pregeodesics and tight lower and upper bounds are available. Third, we consider the case of Fisher metrics being Hessian metrics, and report generic tight upper bounds on the Fisher-Rao distances using techniques of information geometry. Uniparametric and biparametric statistical models always have Fisher Hessian metrics, and in general a simple test allows to check whether the Fisher information matrix yields a Hessian metric or not. Fourth, we consider elliptical distribution families and show how to apply the above techniques to these models. We also propose two new distances based either on the Fisher-Rao lengths of curves serving as proxies of Fisher-Rao geodesics, or based on the Birkhoff/Hilbert projective cone distance. Last, we consider an alternative group-theoretic approach for statistical transformation models based on the notion of maximal invariant which yields insights on the structures of the Fisher-Rao distance formula which may be used fruitfully in applications.

The direct parametrisation method for invariant manifold is a model-order reduction technique that can be applied to nonlinear systems described by PDEs and discretised e.g. with a finite element procedure in order to derive efficient reduced-order models (ROMs). In nonlinear vibrations, it has already been applied to autonomous and non-autonomous problems to propose ROMs that can compute backbone and frequency-response curves of structures with geometric nonlinearity. While previous developments used a first-order expansion to cope with the non-autonomous term, this assumption is here relaxed by proposing a different treatment. The key idea is to enlarge the dimension of the parametrising coordinates with additional entries related to the forcing. A new algorithm is derived with this starting assumption and, as a key consequence, the resonance relationships appearing through the homological equations involve multiple occurrences of the forcing frequency, showing that with this new development, ROMs for systems exhibiting a superharmonic resonance, can be derived. The method is implemented and validated on academic test cases involving beams and arches. It is numerically demonstrated that the method generates efficient ROMs for problems involving 3:1 and 2:1 superharmonic resonances, as well as converged results for systems where the first-order truncation on the non-autonomous term showed a clear limitation.

Mediation analysis aims to decipher the underlying causal mechanisms between an exposure, an outcome, and intermediate variables called mediators. Initially developed for fixed-time mediator and outcome, it has been extended to the framework of longitudinal data by discretizing the assessment times of mediator and outcome. Yet, processes in play in longitudinal studies are usually defined in continuous time and measured at irregular and subject-specific visits. This is the case in dementia research when cerebral and cognitive changes measured at planned visits in cohorts are of interest. We thus propose a methodology to estimate the causal mechanisms between a time-fixed exposure ($X$), a mediator process ($\mathcal{M}_t$) and an outcome process ($\mathcal{Y}_t$) both measured repeatedly over time in the presence of a time-dependent confounding process ($\mathcal{L}_t$). We consider three types of causal estimands, the natural effects, path-specific effects and randomized interventional analogues to natural effects, and provide identifiability assumptions. We employ a dynamic multivariate model based on differential equations for their estimation. The performance of the methods are explored in simulations, and we illustrate the method in two real-world examples motivated by the 3C cerebral aging study to assess: (1) the effect of educational level on functional dependency through depressive symptomatology and cognitive functioning, and (2) the effect of a genetic factor on cognitive functioning potentially mediated by vascular brain lesions and confounded by neurodegeneration.

In the present work we introduce a novel refinement algorithm for two-dimensional elliptic partial differential equations discretized with Virtual Element Method (VEM). The algorithm improves the numerical solution accuracy and the mesh quality through a controlled refinement strategy applied to the generic polygonal elements of the domain tessellation. The numerical results show that the outlined strategy proves to be versatile and applicable to any two-dimensional problem where polygonal meshes offer advantages. In particular, we focus on the simulation of flow in fractured media, specifically using the Discrete Fracture Network (DFN) model. A residual a-posteriori error estimator tailored for the DFN case is employed. We chose this particular application to emphasize the effectiveness of the algorithm in handling complex geometries. All the numerical tests demonstrate optimal convergence rates for all the tested VEM orders.

This paper develops an in-depth treatment concerning the problem of approximating the Gaussian smoothing and Gaussian derivative computations in scale-space theory for application on discrete data. With close connections to previous axiomatic treatments of continuous and discrete scale-space theory, we consider three main ways discretizing these scale-space operations in terms of explicit discrete convolutions, based on either (i) sampling the Gaussian kernels and the Gaussian derivative kernels, (ii) locally integrating the Gaussian kernels and the Gaussian derivative kernels over each pixel support region and (iii) basing the scale-space analysis on the discrete analogue of the Gaussian kernel, and then computing derivative approximations by applying small-support central difference operators to the spatially smoothed image data. We study the properties of these three main discretization methods both theoretically and experimentally, and characterize their performance by quantitative measures, including the results they give rise to with respect to the task of scale selection, investigated for four different use cases, and with emphasis on the behaviour at fine scales. The results show that the sampled Gaussian kernels and derivatives as well as the integrated Gaussian kernels and derivatives perform very poorly at very fine scales. At very fine scales, the discrete analogue of the Gaussian kernel with its corresponding discrete derivative approximations performs substantially better. The sampled Gaussian kernel and the sampled Gaussian derivatives do, on the other hand, lead to numerically very good approximations of the corresponding continuous results, when the scale parameter is sufficiently large, in the experiments presented in the paper, when the scale parameter is greater than a value of about 1, in units of the grid spacing.

In many experimental contexts, whether and how network interactions impact the outcome of interest for both treated and untreated individuals are key concerns. Networks data is often assumed to perfectly represent these possible interactions. This paper considers the problem of estimating treatment effects when measured connections are, instead, a noisy representation of the true spillover pathways. We show that existing methods, using the potential outcomes framework, yield biased estimators in the presence of this mismeasurement. We develop a new method, using a class of mixture models, that can account for missing connections and discuss its estimation via the Expectation-Maximization algorithm. We check our method's performance by simulating experiments on real network data from 43 villages in India. Finally, we use data from a previously published study to show that estimates using our method are more robust to the choice of network measure.

北京阿比特科技有限公司