亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This work deals with the analysis of longitudinal ordinal responses. The novelty of the proposed approach is in modeling simultaneously the temporal dynamics of a latent trait of interest, measured via the observed ordinal responses, and the answering behaviors influenced by response styles, through hidden Markov models (HMMs) with two latent components. This approach enables the modeling of (i) the substantive latent trait, controlling for response styles; (ii) the change over time of latent trait and answering behavior, allowing also dependence on individual characteristics. For the proposed HMMs, estimation procedures, methods for standard errors calculation, measures of goodness of fit and classification, and full-conditional residuals are discussed. The proposed model is fitted to ordinal longitudinal data from the Survey on Household Income and Wealth (Bank of Italy) to give insights on the evolution of the Italian households financial capability.

相關內容

隱馬爾(er)可(ke)夫(fu)模型(Hidden Markov Model,HMM)是統(tong)計模型,它用來描述一個含(han)有隱含(han)未知參(can)數(shu)的(de)(de)(de)馬爾(er)可(ke)夫(fu)過(guo)程(cheng)。其(qi)難(nan)點是從可(ke)觀(guan)察的(de)(de)(de)參(can)數(shu)中(zhong)確定該過(guo)程(cheng)的(de)(de)(de)隱含(han)參(can)數(shu)。然后利(li)用這些參(can)數(shu)來作進(jin)一步的(de)(de)(de)分析,例如模式識(shi)別。 其(qi)是在被(bei)(bei)建模的(de)(de)(de)系統(tong)被(bei)(bei)認(ren)為是一個馬爾(er)可(ke)夫(fu)過(guo)程(cheng)與未觀(guan)測(ce)到的(de)(de)(de)(隱藏(zang)的(de)(de)(de))的(de)(de)(de)狀(zhuang)態的(de)(de)(de)統(tong)計馬爾(er)可(ke)夫(fu)模型。

We introduce a novel, probabilistic binary latent variable model to detect noisy or approximate repeats of patterns in sparse binary data. The model is based on the "Noisy-OR model" (Heckerman, 1990), used previously for disease and topic modelling. The model's capability is demonstrated by extracting structure in recordings from retinal neurons, but it can be widely applied to discover and model latent structure in noisy binary data. In the context of spiking neural data, the task is to "explain" spikes of individual neurons in terms of groups of neurons, "Cell Assemblies" (CAs), that often fire together, due to mutual interactions or other causes. The model infers sparse activity in a set of binary latent variables, each describing the activity of a cell assembly. When the latent variable of a cell assembly is active, it reduces the probabilities of neurons belonging to this assembly to be inactive. The conditional probability kernels of the latent components are learned from the data in an expectation maximization scheme, involving inference of latent states and parameter adjustments to the model. We thoroughly validate the model on synthesized spike trains constructed to statistically resemble recorded retinal responses to white noise stimulus and natural movie stimulus in data. We also apply our model to spiking responses recorded in retinal ganglion cells (RGCs) during stimulation with a movie and discuss the found structure.

A Bayesian multivariate model with a structured covariance matrix for multi-way nested data is proposed. This flexible modeling framework allows for positive and for negative associations among clustered observations, and generalizes the well-known dependence structure implied by random effects. A conjugate shifted-inverse gamma prior is proposed for the covariance parameters which ensures that the covariance matrix remains positive definite under posterior analysis. A numerically efficient Gibbs sampling procedure is defined for balanced nested designs, and is validated using two simulation studies. For a top-layer unbalanced nested design, the procedure requires an additional data augmentation step. The proposed data augmentation procedure facilitates sampling latent variables from (truncated) univariate normal distributions, and avoids numerical computation of the inverse of the structured covariance matrix. The Bayesian multivariate (linear transformation) model is applied to two-way nested interval-censored event times to analyze differences in adverse events between three groups of patients, who were randomly allocated to treatment with different stents (BIO-RESORT). The parameters of the structured covariance matrix represent unobserved heterogeneity in treatment effects and are examined to detect differential treatment effects.

Our motivation stems from current medical research aiming at personalized treatment using a molecular-based approach. The broad goal is to develop a more precise and targeted decision making process, relative to traditional treatments based primarily on clinical diagnoses. Specifically, we consider patients affected by Acute Myeloid Leukemia (AML), an hematological cancer characterized by uncontrolled proliferation of hematopoietic stem cells in the bone marrow. Because AML responds poorly to chemoterapeutic treatments, the development of targeted therapies is essential to improve patients' prospects. In particular, the dataset we analyze contains the levels of proteins involved in cell cycle regulation and linked to the progression of the disease. We analyse treatment effects within a causal framework represented by a Directed Acyclic Graph (DAG) model, whose vertices are the protein levels in the network. A major obstacle in implementing the above program is however represented by individual heterogeneity. We address this issue through a Dirichlet Process (DP) mixture of Gaussian DAG-models where both the graphical structure as well as the allied model parameters are regarded as uncertain. Our procedure determines a clustering structure of the units reflecting the underlying heterogeneity, and produces subject-specific estimates of causal effects based on Bayesian model averaging. With reference to the AML dataset, we identify different effects of protein regulation among individuals; moreover, our method clusters patients into groups that exhibit only mild similarities with traditional categories based on morphological features.

Collaborative filtering (CF), as a fundamental approach for recommender systems, is usually built on the latent factor model with learnable parameters to predict users' preferences towards items. However, designing a proper CF model for a given data is not easy, since the properties of datasets are highly diverse. In this paper, motivated by the recent advances in automated machine learning (AutoML), we propose to design a data-specific CF model by AutoML techniques. The key here is a new framework that unifies state-of-the-art (SOTA) CF methods and splits them into disjoint stages of input encoding, embedding function, interaction function, and prediction function. We further develop an easy-to-use, robust, and efficient search strategy, which utilizes random search and a performance predictor for efficient searching within the above framework. In this way, we can combinatorially generalize data-specific CF models, which have not been visited in the literature, from SOTA ones. Extensive experiments on five real-world datasets demonstrate that our method can consistently outperform SOTA ones for various CF tasks. Further experiments verify the rationality of the proposed framework and the efficiency of the search strategy. The searched CF models can also provide insights for exploring more effective methods in the future

Interpretation of Deep Neural Networks (DNNs) training as an optimal control problem with nonlinear dynamical systems has received considerable attention recently, yet the algorithmic development remains relatively limited. In this work, we make an attempt along this line by reformulating the training procedure from the trajectory optimization perspective. We first show that most widely-used algorithms for training DNNs can be linked to the Differential Dynamic Programming (DDP), a celebrated second-order trajectory optimization algorithm rooted in the Approximate Dynamic Programming. In this vein, we propose a new variant of DDP that can accept batch optimization for training feedforward networks, while integrating naturally with the recent progress in curvature approximation. The resulting algorithm features layer-wise feedback policies which improve convergence rate and reduce sensitivity to hyper-parameter over existing methods. We show that the algorithm is competitive against state-ofthe-art first and second order methods. Our work opens up new avenues for principled algorithmic design built upon the optimal control theory.

For extracting meaningful topics from texts, their structures should be considered properly. In this paper, we aim to analyze structured time-series documents such as a collection of news articles and a series of scientific papers, wherein topics evolve along time depending on multiple topics in the past and are also related to each other at each time. To this end, we propose a dynamic and static topic model, which simultaneously considers the dynamic structures of the temporal topic evolution and the static structures of the topic hierarchy at each time. We show the results of experiments on collections of scientific papers, in which the proposed method outperformed conventional models. Moreover, we show an example of extracted topic structures, which we found helpful for analyzing research activities.

We consider the task of learning the parameters of a {\em single} component of a mixture model, for the case when we are given {\em side information} about that component, we call this the "search problem" in mixture models. We would like to solve this with computational and sample complexity lower than solving the overall original problem, where one learns parameters of all components. Our main contributions are the development of a simple but general model for the notion of side information, and a corresponding simple matrix-based algorithm for solving the search problem in this general setting. We then specialize this model and algorithm to four common scenarios: Gaussian mixture models, LDA topic models, subspace clustering, and mixed linear regression. For each one of these we show that if (and only if) the side information is informative, we obtain parameter estimates with greater accuracy, and also improved computation complexity than existing moment based mixture model algorithms (e.g. tensor methods). We also illustrate several natural ways one can obtain such side information, for specific problem instances. Our experiments on real data sets (NY Times, Yelp, BSDS500) further demonstrate the practicality of our algorithms showing significant improvement in runtime and accuracy.

An adversarial autoencoder conditioned on known parameters of a physical modeling bowed string synthesizer is evaluated for use in parameter estimation and resynthesis tasks. Latent dimensions are provided to capture variance not explained by the conditional parameters. Results are compared with and without the adversarial training, and a system capable of "copying" a given parameter-signal bidirectional relationship is examined. A real-time synthesis system built on a generative, conditioned and regularized neural network is presented, allowing to construct engaging sound synthesizers based purely on recorded data.

Recommender systems rely on large datasets of historical data and entail serious privacy risks. A server offering recommendations as a service to a client might leak more information than necessary regarding its recommendation model and training dataset. At the same time, the disclosure of the client's preferences to the server is also a matter of concern. Providing recommendations while preserving privacy in both senses is a difficult task, which often comes into conflict with the utility of the system in terms of its recommendation-accuracy and efficiency. Widely-purposed cryptographic primitives such as secure multi-party computation and homomorphic encryption offer strong security guarantees, but in conjunction with state-of-the-art recommender systems yield far-from-practical solutions. We precisely define the above notion of security and propose CryptoRec, a novel recommendations-as-a-service protocol, which encompasses a crypto-friendly recommender system. This model possesses two interesting properties: (1) It models user-item interactions in a user-free latent feature space in which it captures personalized user features by an aggregation of item features. This means that a server with a pre-trained model can provide recommendations for a client without having to re-train the model with the client's preferences. Nevertheless, re-training the model still improves accuracy. (2) It only uses addition and multiplication operations, making the model straightforwardly compatible with homomorphic encryption schemes.

We study response generation for open domain conversation in chatbots. Existing methods assume that words in responses are generated from an identical vocabulary regardless of their inputs, which not only makes them vulnerable to generic patterns and irrelevant noise, but also causes a high cost in decoding. We propose a dynamic vocabulary sequence-to-sequence (DVS2S) model which allows each input to possess their own vocabulary in decoding. In training, vocabulary construction and response generation are jointly learned by maximizing a lower bound of the true objective with a Monte Carlo sampling method. In inference, the model dynamically allocates a small vocabulary for an input with the word prediction model, and conducts decoding only with the small vocabulary. Because of the dynamic vocabulary mechanism, DVS2S eludes many generic patterns and irrelevant words in generation, and enjoys efficient decoding at the same time. Experimental results on both automatic metrics and human annotations show that DVS2S can significantly outperform state-of-the-art methods in terms of response quality, but only requires 60% decoding time compared to the most efficient baseline.

北京阿比特科技有限公司