亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper examines the impact of Generative Artificial Intelligence (GenAI) tools like ChatGPT on the creation and consumption of terminological definitions. From the terminologist's point of view, the strategic use of GenAI tools can streamline the process of crafting definitions, reducing both time and effort, while potentially enhancing quality. GenAI tools enable AI-assisted terminography, notably post-editing terminography, where the machine produces a definition that the terminologist then corrects or refines. However, the potential of GenAI tools to fulfill all the terminological needs of a user, including term definitions, challenges the very existence of terminological definitions and resources as we know them. Unlike terminological definitions, GenAI tools can describe the knowledge activated by a term in a specific context. However, a main drawback of these tools is that their output can contain errors. For this reason, users requiring reliability will likely still resort to terminological resources for definitions. Nevertheless, with the inevitable integration of AI into terminology work, the distinction between human-created and AI-created content will become increasingly blurred.

相關內容

這個新版本的工具會議系列恢復了從1989年到2012年的50個會議的傳統。工具最初是“面向對象語言和系統的技術”,后來發展到包括軟件技術的所有創新方面。今天許多最重要的軟件概念都是在這里首次引入的。2019年TOOLS 50+1在俄羅斯喀山附近舉行,以同樣的創新精神、對所有與軟件相關的事物的熱情、科學穩健性和行業適用性的結合以及歡迎該領域所有趨勢和社區的開放態度,延續了該系列。 官網鏈接: · MoDELS · LLaMA · 代碼 · 語言模型化 ·
2024 年 5 月 24 日

Recent advancements in Large Language Models (LLMs) and their utilization in code generation tasks have significantly reshaped the field of software development. Despite the remarkable efficacy of code completion solutions in mainstream programming languages, their performance lags when applied to less ubiquitous formats such as OpenAPI definitions. This study evaluates the OpenAPI completion performance of GitHub Copilot, a prevalent commercial code completion tool, and proposes a set of task-specific optimizations leveraging Meta's open-source model Code Llama. A semantics-aware OpenAPI completion benchmark proposed in this research is used to perform a series of experiments through which the impact of various prompt-engineering and fine-tuning techniques on the Code Llama model's performance is analyzed. The fine-tuned Code Llama model reaches a peak correctness improvement of 55.2% over GitHub Copilot despite utilizing 25 times fewer parameters than the commercial solution's underlying Codex model. Additionally, this research proposes an enhancement to a widely used code infilling training technique, addressing the issue of underperformance when the model is prompted with context sizes smaller than those used during training.

This work introduces Neural Elevations Models (NEMos), which adapt Neural Radiance Fields to a 2.5D continuous and differentiable terrain model. In contrast to traditional terrain representations such as digital elevation models, NEMos can be readily generated from imagery, a low-cost data source, and provide a lightweight representation of terrain through an implicit continuous and differentiable height field. We propose a novel method for jointly training a height field and radiance field within a NeRF framework, leveraging quantile regression. Additionally, we introduce a path planning algorithm that performs gradient-based optimization of a continuous cost function for minimizing distance, slope changes, and control effort, enabled by differentiability of the height field. We perform experiments on simulated and real-world terrain imagery, demonstrating NEMos ability to generate high-quality reconstructions and produce smoother paths compared to discrete path planning methods. Future work will explore the incorporation of features and semantics into the height field, creating a generalized terrain model.

There is a growing attention given to utilizing Lagrangian and Hamiltonian mechanics with network training in order to incorporate physics into the network. Most commonly, conservative systems are modeled, in which there are no frictional losses, so the system may be run forward and backward in time without requiring regularization. This work addresses systems in which the reverse direction is ill-posed because of the dissipation that occurs in forward evolution. The novelty is the use of Morse-Feshbach Lagrangian, which models dissipative dynamics by doubling the number of dimensions of the system in order to create a mirror latent representation that would counterbalance the dissipation of the observable system, making it a conservative system, albeit embedded in a larger space. We start with their formal approach by redefining a new Dissipative Lagrangian, such that the unknown matrices in the Euler-Lagrange's equations arise as partial derivatives of the Lagrangian with respect to only the observables. We then train a network from simulated training data for dissipative systems such as Fickian diffusion that arise in materials sciences. It is shown by experiments that the systems can be evolved in both forward and reverse directions without regularization beyond that provided by the Morse-Feshbach Lagrangian. Experiments of dissipative systems, such as Fickian diffusion, demonstrate the degree to which dynamics can be reversed.

This paper explores practical aspects of using a high-level functional language for GPU-based arithmetic on ``midsize'' integers. By this we mean integers of up to about a quarter million bits, which is sufficient for most practical purposes. The goal is to understand whether it is possible to support efficient nested-parallel programs with a small, flexible code base. We report on GPU implementations for addition and multiplication of integers that fit in one CUDA block, thus leveraging temporal reuse from scratchpad memories. Our key contribution resides in the simplicity of the proposed solutions: We recognize that addition is a straightforward application of scan, which is known to allow efficient GPU implementation. For quadratic multiplication we employ a simple work-partitioning strategy that offers good temporal locality. For FFT multiplication, we efficiently map the computation in the domain of integral fields by finding ``good'' primes that enable almost-full utilization of machine words. In comparison, related work uses complex tiling strategies -- which feel too big a hammer for the job -- or uses the computational domain of reals, which may degrade the magnitude of the base in which the computation is carried. We evaluate the performance in comparison to the state-of-the-art CGBN library, authored by NvidiaLab, and report that our CUDA prototype outperforms CGBN for integer sizes higher than 32K bits, while offering comparable performance for smaller sizes. Moreover, we are, to our knowledge, the first to report that FFT multiplication outperforms the classical one on the larger sizes that still fit in a CUDA block. Finally, we examine Futhark's strengths and weaknesses for efficiently supporting such computations and find out that a compiler pass aimed at efficient sequentialization of excess parallelism would significantly improve performance.

This paper presents a novel approach leveraging Spiking Neural Networks (SNNs) to construct a Variational Quantized Autoencoder (VQ-VAE) with a temporal codebook inspired by hippocampal time cells. This design captures and utilizes temporal dependencies, significantly enhancing the generative capabilities of SNNs. Neuroscientific research has identified hippocampal "time cells" that fire sequentially during temporally structured experiences. Our temporal codebook emulates this behavior by triggering the activation of time cell populations based on similarity measures as input stimuli pass through it. We conducted extensive experiments on standard benchmark datasets, including MNIST, FashionMNIST, CIFAR10, CelebA, and downsampled LSUN Bedroom, to validate our model's performance. Furthermore, we evaluated the effectiveness of the temporal codebook on neuromorphic datasets NMNIST and DVS-CIFAR10, and demonstrated the model's capability with high-resolution datasets such as CelebA-HQ, LSUN Bedroom, and LSUN Church. The experimental results indicate that our method consistently outperforms existing SNN-based generative models across multiple datasets, achieving state-of-the-art performance. Notably, our approach excels in generating high-resolution and temporally consistent data, underscoring the crucial role of temporal information in SNN-based generative modeling.

This paper proposes a novel online evaluation protocol for Test Time Adaptation (TTA) methods, which penalizes slower methods by providing them with fewer samples for adaptation. TTA methods leverage unlabeled data at test time to adapt to distribution shifts. Although many effective methods have been proposed, their impressive performance usually comes at the cost of significantly increased computation budgets. Current evaluation protocols overlook the effect of this extra computation cost, affecting their real-world applicability. To address this issue, we propose a more realistic evaluation protocol for TTA methods, where data is received in an online fashion from a constant-speed data stream, thereby accounting for the method's adaptation speed. We apply our proposed protocol to benchmark several TTA methods on multiple datasets and scenarios. Extensive experiments show that, when accounting for inference speed, simple and fast approaches can outperform more sophisticated but slower methods. For example, SHOT from 2020, outperforms the state-of-the-art method SAR from 2023 in this setting. Our results reveal the importance of developing practical TTA methods that are both accurate and efficient.

In this paper we present Large Language Model Assisted Retrieval Model Ranking (LARMOR), an effective unsupervised approach that leverages LLMs for selecting which dense retriever to use on a test corpus (target). Dense retriever selection is crucial for many IR applications that rely on using dense retrievers trained on public corpora to encode or search a new, private target corpus. This is because when confronted with domain shift, where the downstream corpora, domains, or tasks of the target corpus differ from the domain/task the dense retriever was trained on, its performance often drops. Furthermore, when the target corpus is unlabeled, e.g., in a zero-shot scenario, the direct evaluation of the model on the target corpus becomes unfeasible. Unsupervised selection of the most effective pre-trained dense retriever becomes then a crucial challenge. Current methods for dense retriever selection are insufficient in handling scenarios with domain shift. Our proposed solution leverages LLMs to generate pseudo-relevant queries, labels and reference lists based on a set of documents sampled from the target corpus. Dense retrievers are then ranked based on their effectiveness on these generated pseudo-relevant signals. Notably, our method is the first approach that relies solely on the target corpus, eliminating the need for both training corpora and test labels. To evaluate the effectiveness of our method, we construct a large pool of state-of-the-art dense retrievers. The proposed approach outperforms existing baselines with respect to both dense retriever selection and ranking. We make our code and results publicly available at //github.com/ielab/larmor/.

This paper explores the innovative application of Stable Video Diffusion (SVD), a diffusion model that revolutionizes the creation of dynamic video content from static images. As digital media and design industries accelerate, SVD emerges as a powerful generative tool that enhances productivity and introduces novel creative possibilities. The paper examines the technical underpinnings of diffusion models, their practical effectiveness, and potential future developments, particularly in the context of video generation. SVD operates on a probabilistic framework, employing a gradual denoising process to transform random noise into coherent video frames. It addresses the challenges of visual consistency, natural movement, and stylistic reflection in generated videos, showcasing high generalization capabilities. The integration of SVD in design tasks promises enhanced creativity, rapid prototyping, and significant time and cost efficiencies. It is particularly impactful in areas requiring frame-to-frame consistency, natural motion capture, and creative diversity, such as animation, visual effects, advertising, and educational content creation. The paper concludes that SVD is a catalyst for design innovation, offering a wide array of applications and a promising avenue for future research and development in the field of digital media and design.

This work aims to provide an engagement decision support tool for Beyond Visual Range (BVR) air combat in the context of Defensive Counter Air (DCA) missions. In BVR air combat, engagement decision refers to the choice of the moment the pilot engages a target by assuming an offensive stance and executing corresponding maneuvers. To model this decision, we use the Brazilian Air Force's Aerospace Simulation Environment (\textit{Ambiente de Simula\c{c}\~ao Aeroespacial - ASA} in Portuguese), which generated 3,729 constructive simulations lasting 12 minutes each and a total of 10,316 engagements. We analyzed all samples by an operational metric called the DCA index, which represents, based on the experience of subject matter experts, the degree of success in this type of mission. This metric considers the distances of the aircraft of the same team and the opposite team, the point of Combat Air Patrol, and the number of missiles used. By defining the engagement status right before it starts and the average of the DCA index throughout the engagement, we create a supervised learning model to determine the quality of a new engagement. An algorithm based on decision trees, working with the XGBoost library, provides a regression model to predict the DCA index with a coefficient of determination close to 0.8 and a Root Mean Square Error of 0.05 that can furnish parameters to the BVR pilot to decide whether or not to engage. Thus, using data obtained through simulations, this work contributes by building a decision support system based on machine learning for BVR air combat.

In this paper, we introduce the Reinforced Mnemonic Reader for machine reading comprehension tasks, which enhances previous attentive readers in two aspects. First, a reattention mechanism is proposed to refine current attentions by directly accessing to past attentions that are temporally memorized in a multi-round alignment architecture, so as to avoid the problems of attention redundancy and attention deficiency. Second, a new optimization approach, called dynamic-critical reinforcement learning, is introduced to extend the standard supervised method. It always encourages to predict a more acceptable answer so as to address the convergence suppression problem occurred in traditional reinforcement learning algorithms. Extensive experiments on the Stanford Question Answering Dataset (SQuAD) show that our model achieves state-of-the-art results. Meanwhile, our model outperforms previous systems by over 6% in terms of both Exact Match and F1 metrics on two adversarial SQuAD datasets.

北京阿比特科技有限公司