亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Online surgical phase recognition plays a significant role towards building contextual tools that could quantify performance and oversee the execution of surgical workflows. Current approaches are limited since they train spatial feature extractors using frame-level supervision that could lead to incorrect predictions due to similar frames appearing at different phases, and poorly fuse local and global features due to computational constraints which can affect the analysis of long videos commonly encountered in surgical interventions. In this paper, we present a two-stage method, called Long Video Transformer (LoViT) for fusing short- and long-term temporal information that combines a temporally-rich spatial feature extractor and a multi-scale temporal aggregator consisting of two cascaded L-Trans modules based on self-attention, followed by a G-Informer module based on ProbSparse self-attention for processing global temporal information. The multi-scale temporal head then combines local and global features and classifies surgical phases using phase transition-aware supervision. Our approach outperforms state-of-the-art methods on the Cholec80 and AutoLaparo datasets consistently. Compared to Trans-SVNet, LoViT achieves a 2.39 pp (percentage point) improvement in video-level accuracy on Cholec80 and a 3.14 pp improvement on AutoLaparo. Moreover, it achieves a 5.25 pp improvement in phase-level Jaccard on AutoLaparo and a 1.55 pp improvement on Cholec80. Our results demonstrate the effectiveness of our approach in achieving state-of-the-art performance of surgical phase recognition on two datasets of different surgical procedures and temporal sequencing characteristics whilst introducing mechanisms that cope with long videos.

相關內容

This paper discusses one of the most challenging practical engineering problems in speaker recognition systems - the version control of models and user profiles. A typical speaker recognition system consists of two stages: the enrollment stage, where a profile is generated from user-provided enrollment audio; and the runtime stage, where the voice identity of the runtime audio is compared against the stored profiles. As technology advances, the speaker recognition system needs to be updated for better performance. However, if the stored user profiles are not updated accordingly, version mismatch will result in meaningless recognition results. In this paper, we describe different version control strategies for speaker recognition systems that had been carefully studied at Google from years of engineering practice. These strategies are categorized into three groups according to how they are deployed in the production environment: device-side deployment, server-side deployment, and hybrid deployment. To compare different strategies with quantitative metrics under various network configurations, we present SpeakerVerSim, an easily-extensible Python-based simulation framework for different server-side deployment strategies of speaker recognition systems.

Processing giga-pixel whole slide histopathology images (WSI) is a computationally expensive task. Multiple instance learning (MIL) has become the conventional approach to process WSIs, in which these images are split into smaller patches for further processing. However, MIL-based techniques ignore explicit information about the individual cells within a patch. In this paper, by defining the novel concept of shared-context processing, we designed a multi-modal Graph Transformer (AMIGO) that uses the celluar graph within the tissue to provide a single representation for a patient while taking advantage of the hierarchical structure of the tissue, enabling a dynamic focus between cell-level and tissue-level information. We benchmarked the performance of our model against multiple state-of-the-art methods in survival prediction and showed that ours can significantly outperform all of them including hierarchical Vision Transformer (ViT). More importantly, we show that our model is strongly robust to missing information to an extent that it can achieve the same performance with as low as 20% of the data. Finally, in two different cancer datasets, we demonstrated that our model was able to stratify the patients into low-risk and high-risk groups while other state-of-the-art methods failed to achieve this goal. We also publish a large dataset of immunohistochemistry images (InUIT) containing 1,600 tissue microarray (TMA) cores from 188 patients along with their survival information, making it one of the largest publicly available datasets in this context.

In the research field of few-shot learning, the main difference between image-based and video-based is the additional temporal dimension for videos. In recent years, many approaches for few-shot action recognition have followed the metric-based methods, especially, since some works use the Transformer to get the cross-attention feature of the videos or the enhanced prototype, and the results are competitive. However, they do not mine enough information from the Transformer because they only focus on the feature of a single level. In our paper, we have addressed this problem. We propose an end-to-end method named "Task-Specific Alignment and Multiple Level Transformer Network (TSA-MLT)". In our model, the Multiple Level Transformer focuses on the multiple-level feature of the support video and query video. Especially before Multiple Level Transformer, we use task-specific TSA to filter unimportant or misleading frames as a pre-processing. Furthermore, we adopt a fusion loss using two kinds of distance, the first is L2 sequence distance, which focuses on temporal order alignment. The second one is Optimal transport distance, which focuses on measuring the gap between the appearance and semantics of the videos. Using a simple fusion network, we fuse the two distances element-wise, then use the cross-entropy loss as our fusion loss. Extensive experiments show our method achieves state-of-the-art results on the HMDB51 and UCF101 datasets and a competitive result on the benchmark of Kinetics and something-2-something V2 datasets. Our code will be available at the URL: //github.com/cofly2014/tsa-mlt.git

Change detection and irregular object extraction in 3D point clouds is a challenging task that is of high importance not only for autonomous navigation but also for updating existing digital twin models of various industrial environments. This article proposes an innovative approach for change detection in 3D point clouds using deep learned place recognition descriptors and irregular object extraction based on voxel-to-point comparison. The proposed method first aligns the bi-temporal point clouds using a map-merging algorithm in order to establish a common coordinate frame. Then, it utilizes deep learning techniques to extract robust and discriminative features from the 3D point cloud scans, which are used to detect changes between consecutive point cloud frames and therefore find the changed areas. Finally, the altered areas are sampled and compared between the two time instances to extract any obstructions that caused the area to change. The proposed method was successfully evaluated in real-world field experiments, where it was able to detect different types of changes in 3D point clouds, such as object or muck-pile addition and displacement, showcasing the effectiveness of the approach. The results of this study demonstrate important implications for various applications, including safety and security monitoring in construction sites, mapping and exploration and suggests potential future research directions in this field.

Tumor region segmentation is an essential task for the quantitative analysis of digital pathology. Recently presented deep neural networks have shown state-of-the-art performance in various image-segmentation tasks. However, because of the unclear boundary between the cancerous and normal regions in pathology images, despite using modern methods, it is difficult to produce satisfactory segmentation results in terms of the reliability and accuracy required for medical data. In this study, we propose an interactive segmentation method that allows users to refine the output of deep neural networks through click-type user interactions. The primary method is to formulate interactive segmentation as an optimization problem that leverages both user-provided click constraints and semantic information in a feature map using a click-guided attention module (CGAM). Unlike other existing methods, CGAM avoids excessive changes in segmentation results, which can lead to the overfitting of user clicks. Another advantage of CGAM is that the model size is independent of input image size. Experimental results on pathology image datasets indicated that our method performs better than existing state-of-the-art methods.

In this work, we propose a streaming AV-ASR system based on a hybrid connectionist temporal classification (CTC)/attention neural network architecture. The audio and the visual encoder neural networks are both based on the conformer architecture, which is made streamable using chunk-wise self-attention (CSA) and causal convolution. Streaming recognition with a decoder neural network is realized by using the triggered attention technique, which performs time-synchronous decoding with joint CTC/attention scoring. Additionally, we propose a novel alignment regularization technique that promotes synchronization of the audio and visual encoder, which in turn results in better word error rates (WERs) at all SNR levels for streaming and offline AV-ASR models. The proposed AV-ASR model achieves WERs of 2.0% and 2.6% on the Lip Reading Sentences 3 (LRS3) dataset in an offline and online setup, respectively, which both present state-of-the-art results when no external training data are used.

Point cloud-based large scale place recognition is fundamental for many applications like Simultaneous Localization and Mapping (SLAM). Although many models have been proposed and have achieved good performance by learning short-range local features, long-range contextual properties have often been neglected. Moreover, the model size has also become a bottleneck for their wide applications. To overcome these challenges, we propose a super light-weight network model termed SVT-Net for large scale place recognition. Specifically, on top of the highly efficient 3D Sparse Convolution (SP-Conv), an Atom-based Sparse Voxel Transformer (ASVT) and a Cluster-based Sparse Voxel Transformer (CSVT) are proposed to learn both short-range local features and long-range contextual features in this model. Consisting of ASVT and CSVT, SVT-Net can achieve state-of-the-art on benchmark datasets in terms of both accuracy and speed with a super-light model size (0.9M). Meanwhile, two simplified versions of SVT-Net are introduced, which also achieve state-of-the-art and further reduce the model size to 0.8M and 0.4M respectively.

In recent years, object detection has experienced impressive progress. Despite these improvements, there is still a significant gap in the performance between the detection of small and large objects. We analyze the current state-of-the-art model, Mask-RCNN, on a challenging dataset, MS COCO. We show that the overlap between small ground-truth objects and the predicted anchors is much lower than the expected IoU threshold. We conjecture this is due to two factors; (1) only a few images are containing small objects, and (2) small objects do not appear enough even within each image containing them. We thus propose to oversample those images with small objects and augment each of those images by copy-pasting small objects many times. It allows us to trade off the quality of the detector on large objects with that on small objects. We evaluate different pasting augmentation strategies, and ultimately, we achieve 9.7\% relative improvement on the instance segmentation and 7.1\% on the object detection of small objects, compared to the current state of the art method on MS COCO.

We present SlowFast networks for video recognition. Our model involves (i) a Slow pathway, operating at low frame rate, to capture spatial semantics, and (ii) a Fast pathway, operating at high frame rate, to capture motion at fine temporal resolution. The Fast pathway can be made very lightweight by reducing its channel capacity, yet can learn useful temporal information for video recognition. Our models achieve strong performance for both action classification and detection in video, and large improvements are pin-pointed as contributions by our SlowFast concept. We report 79.0% accuracy on the Kinetics dataset without using any pre-training, largely surpassing the previous best results of this kind. On AVA action detection we achieve a new state-of-the-art of 28.3 mAP. Code will be made publicly available.

Video captioning is the task of automatically generating a textual description of the actions in a video. Although previous work (e.g. sequence-to-sequence model) has shown promising results in abstracting a coarse description of a short video, it is still very challenging to caption a video containing multiple fine-grained actions with a detailed description. This paper aims to address the challenge by proposing a novel hierarchical reinforcement learning framework for video captioning, where a high-level Manager module learns to design sub-goals and a low-level Worker module recognizes the primitive actions to fulfill the sub-goal. With this compositional framework to reinforce video captioning at different levels, our approach significantly outperforms all the baseline methods on a newly introduced large-scale dataset for fine-grained video captioning. Furthermore, our non-ensemble model has already achieved the state-of-the-art results on the widely-used MSR-VTT dataset.

北京阿比特科技有限公司