Managing project risk is a key part of the successful implementation of any large project and is widely recognized as a best practice for public agencies to deliver infrastructures. The conventional method of identifying and evaluating project risks involves getting input from subject matter experts at risk workshops in the early phases of a project. As a project moves through its life cycle, these identified risks and their assessments evolve. Some risks are realized to become issues, some are mitigated, and some are retired as no longer important. Despite the value provided by conventional expert-based approaches, several challenges remain due to the time-consuming and expensive processes involved. Moreover, limited is known about how risks evolve from ex-ante to ex-post over time. How well does the project team identify and evaluate risks in the initial phase compared to what happens during project execution? Using historical data and artificial intelligence techniques, this study addressed these limitations by introducing a data-driven framework to identify risks automatically and to examine the quality of early risk registers and risk assessments. Risk registers from more than 70 U.S. major transportation projects form the input dataset.
Most power systems' approaches are currently tending towards stochastic and probabilistic methods due to the high variability of renewable sources and the stochastic nature of loads. Conventional power flow (PF) approaches such as forward-backward sweep (FBS) and Newton-Raphson require a high number of iterations to solve non-linear PF equations making them computationally very intensive. PF is the most important study performed by utility, required in all stages of the power system, especially in operations and planning. This paper discusses the applications of deep learning (DL) to predict PF solutions for three-phase unbalanced power distribution grids. Three deep neural networks (DNNs); Radial Basis Function Network (RBFnet), Multi-Layer Perceptron (MLP), and Convolutional Neural Network (CNN), are proposed in this paper to predict PF solutions. The PF problem is formulated as a multi-output regression model where two or more output values are predicted based on the inputs. The training and testing data are generated through the OpenDSS-MATLAB COM interface. These methods are completely data-driven where the training relies on reducing the mismatch at each node without the need for the knowledge of the system. The novelty of the proposed methodology is that the models can accurately predict the PF solutions for the unbalanced distribution grids with mutual coupling and are robust to different R/X ratios, topology changes as well as generation and load variability introduced by the integration of distributed energy resources (DERs) and electric vehicles (EVs). To test the efficacy of the DNN models, they are applied to IEEE 4-node and 123-node test cases, and the American Electric Power (AEP) feeder model. The PF results for RBFnet, MLP, and CNN models are discussed in this paper demonstrating that all three DNN models provide highly accurate results in predicting PF solutions.
In the stochastic contextual low-rank matrix bandit problem, the expected reward of an action is given by the inner product between the action's feature matrix and some fixed, but initially unknown $d_1$ by $d_2$ matrix $\Theta^*$ with rank $r \ll \{d_1, d_2\}$, and an agent sequentially takes actions based on past experience to maximize the cumulative reward. In this paper, we study the generalized low-rank matrix bandit problem, which has been recently proposed in \cite{lu2021low} under the Generalized Linear Model (GLM) framework. To overcome the computational infeasibility and theoretical restrain of existing algorithms on this problem, we first propose the G-ESTT framework that modifies the idea from \cite{jun2019bilinear} by using Stein's method on the subspace estimation and then leverage the estimated subspaces via a regularization idea. Furthermore, we remarkably improve the efficiency of G-ESTT by using a novel exclusion idea on the estimated subspace instead, and propose the G-ESTS framework. We also show that G-ESTT can achieve the $\tilde{O}(\sqrt{(d_1+d_2)MrT})$ bound of regret while G-ESTS can achineve the $\tilde{O}(\sqrt{(d_1+d_2)^{3/2}Mr^{3/2}T})$ bound of regret under mild assumption up to logarithm terms, where $M$ is some problem dependent value. Under a reasonable assumption that $M = O((d_1+d_2)^2)$ in our problem setting, the regret of G-ESTT is consistent with the current best regret of $\tilde{O}((d_1+d_2)^{3/2} \sqrt{rT}/D_{rr})$~\citep{lu2021low} ($D_{rr}$ will be defined later). For completeness, we conduct experiments to illustrate that our proposed algorithms, especially G-ESTS, are also computationally tractable and consistently outperform other state-of-the-art (generalized) linear matrix bandit methods based on a suite of simulations.
The prevalence of the powerful multilingual models, such as Whisper, has significantly advanced the researches on speech recognition. However, these models often struggle with handling the code-switching setting, which is essential in multilingual speech recognition. Recent studies have attempted to address this setting by separating the modules for different languages to ensure distinct latent representations for languages. Some other methods considered the switching mechanism based on language identification. In this study, a new attention-guided adaptation is proposed to conduct parameter-efficient learning for bilingual ASR. This method selects those attention heads in a model which closely express language identities and then guided those heads to be correctly attended with their corresponding languages. The experiments on the Mandarin-English code-switching speech corpus show that the proposed approach achieves a 14.2% mixed error rate, surpassing state-of-the-art method, where only 5.6% additional parameters over Whisper are trained.
It is well known over the recent years that measuring the success of projects under the umbrella of project management is inextricably linked with the associated cost, time, and quality. Most of the previous researches in the field assigned a separate mathematical model for each criterion, then numerical methods or search techniques were applied to obtain the optimal trade-off between the three criteria. However in this paper, the problem was addressed by linear multi-objective optimization using only one fuzzy mathematical model. The three criteria were merged in a single non-linear membership function to find the optimal trade-off. Finally, the proposed model is tested and validated using numerical examples.
Despite the recent progress in deep learning, most approaches still go for a silo-like solution, focusing on learning each task in isolation: training a separate neural network for each individual task. Many real-world problems, however, call for a multi-modal approach and, therefore, for multi-tasking models. Multi-task learning (MTL) aims to leverage useful information across tasks to improve the generalization capability of a model. This thesis is concerned with multi-task learning in the context of computer vision. First, we review existing approaches for MTL. Next, we propose several methods that tackle important aspects of multi-task learning. The proposed methods are evaluated on various benchmarks. The results show several advances in the state-of-the-art of multi-task learning. Finally, we discuss several possibilities for future work.
With the rise of powerful pre-trained vision-language models like CLIP, it becomes essential to investigate ways to adapt these models to downstream datasets. A recently proposed method named Context Optimization (CoOp) introduces the concept of prompt learning -- a recent trend in NLP -- to the vision domain for adapting pre-trained vision-language models. Specifically, CoOp turns context words in a prompt into a set of learnable vectors and, with only a few labeled images for learning, can achieve huge improvements over intensively-tuned manual prompts. In our study we identify a critical problem of CoOp: the learned context is not generalizable to wider unseen classes within the same dataset, suggesting that CoOp overfits base classes observed during training. To address the problem, we propose Conditional Context Optimization (CoCoOp), which extends CoOp by further learning a lightweight neural network to generate for each image an input-conditional token (vector). Compared to CoOp's static prompts, our dynamic prompts adapt to each instance and are thus less sensitive to class shift. Extensive experiments show that CoCoOp generalizes much better than CoOp to unseen classes, even showing promising transferability beyond a single dataset; and yields stronger domain generalization performance as well. Code is available at //github.com/KaiyangZhou/CoOp.
Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which can incur drifted global models that are slow to converge. Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users, other than directly averaging their model parameters. This approach, however, depends on a proxy dataset, making it impractical unless such a prerequisite is satisfied. Moreover, the ensemble knowledge is not fully utilized to guide local model learning, which may in turn affect the quality of the aggregated model. Inspired by the prior art, we propose a data-free knowledge distillation} approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner, which is then broadcasted to users, regulating local training using the learned knowledge as an inductive bias. Empirical studies powered by theoretical implications show that, our approach facilitates FL with better generalization performance using fewer communication rounds, compared with the state-of-the-art.
Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.
Knowledge graph embedding, which aims to represent entities and relations as low dimensional vectors (or matrices, tensors, etc.), has been shown to be a powerful technique for predicting missing links in knowledge graphs. Existing knowledge graph embedding models mainly focus on modeling relation patterns such as symmetry/antisymmetry, inversion, and composition. However, many existing approaches fail to model semantic hierarchies, which are common in real-world applications. To address this challenge, we propose a novel knowledge graph embedding model---namely, Hierarchy-Aware Knowledge Graph Embedding (HAKE)---which maps entities into the polar coordinate system. HAKE is inspired by the fact that concentric circles in the polar coordinate system can naturally reflect the hierarchy. Specifically, the radial coordinate aims to model entities at different levels of the hierarchy, and entities with smaller radii are expected to be at higher levels; the angular coordinate aims to distinguish entities at the same level of the hierarchy, and these entities are expected to have roughly the same radii but different angles. Experiments demonstrate that HAKE can effectively model the semantic hierarchies in knowledge graphs, and significantly outperforms existing state-of-the-art methods on benchmark datasets for the link prediction task.
Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.