亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Given an integer $k$ and a graph where every edge is colored either red or blue, the goal of the exact matching problem is to find a perfect matching with the property that exactly $k$ of its edges are red. Soon after Papadimitriou and Yannakakis (JACM 1982) introduced the problem, a randomized polynomial-time algorithm solving the problem was described by Mulmuley et al. (Combinatorica 1987). Despite a lot of effort, it is still not known today whether a deterministic polynomial-time algorithm exists. This makes the exact matching problem an important candidate to test the popular conjecture that the complexity classes P and RP are equal. In a recent article (MFCS 2022), progress was made towards this goal by showing that for bipartite graphs of bounded bipartite independence number, a polynomial time algorithm exists. In terms of parameterized complexity, this algorithm was an XP-algorithm parameterized by the bipartite independence number. In this article, we introduce novel algorithmic techniques that allow us to obtain an FPT-algorithm. If the input is a general graph we show that one can at least compute a perfect matching $M$ which has the correct number of red edges modulo 2, in polynomial time. This is motivated by our last result, in which we prove that an FPT algorithm for general graphs, parameterized by the independence number, reduces to the problem of finding in polynomial time a perfect matching $M$ with at most $k$ red edges and the correct number of red edges modulo 2.

相關內容

Motion planning is a computational problem that finds a sequence of valid trajectories, often based on surrounding agents' forecasting, environmental understanding, and historical and future contexts. It can also be viewed as a game in which agents continuously plan their next move according to other agents' intentions and the encountering environment, further achieving their ultimate goals through incremental actions. To model the dynamic planning and interaction process, we propose a novel framework, DeepEMplanner, which takes the stepwise interaction into account for fine-grained behavior learning. The ego vehicle maximizes each step motion to reach its eventual driving outcome based on the stepwise expectation from agents and its upcoming road conditions. On the other hand, the agents also follow the same philosophy to maximize their stepwise behavior under the encountering environment and the expectations from ego and other agents. Our DeepEMplanner models the interactions among ego, agents, and the dynamic environment in an autoregressive manner by interleaving the Expectation and Maximization processes. Further, we design ego-to-agents, ego-to-map, and ego-to-BEV interaction mechanisms with hierarchical dynamic key objects attention to better model the interactions. Experiments on the nuScenes benchmark show that our approach achieves state-of-the-art results.

Large multimodal models (LMMs) suffer from multimodal hallucination, where they provide incorrect responses misaligned with the given visual information. Recent works have conjectured that one of the reasons behind multimodal hallucination might be due to the vision encoder failing to ground on the image properly. To mitigate this issue, we propose a novel approach that leverages self-feedback as visual cues. Building on this approach, we introduce Volcano, a multimodal self-feedback guided revision model. Volcano generates natural language feedback to its initial response based on the provided visual information and utilizes this feedback to self-revise its initial response. Volcano effectively reduces multimodal hallucination and achieves state-of-the-art on MMHal-Bench, POPE, and GAVIE. It also improves on general multimodal abilities and outperforms previous models on MM-Vet and MMBench. Through a qualitative analysis, we show that Volcano's feedback is properly grounded on the image than the initial response. This indicates that Volcano can provide itself with richer visual information, helping alleviate multimodal hallucination. We publicly release Volcano models of 7B and 13B sizes along with the data and code at //github.com/kaistAI/Volcano.

The flexible-position multiple-input multiple-output (FLP-MIMO), such as fluid antennas and movable antennas, is a promising technology for future wireless communications. This is due to the fact that the positions of antennas at the transceiver and reflector can be dynamically optimized to achieve better channel conditions and, as such, can provide high spectral efficiency (SE) and energy efficiency (EE) gains with fewer antennas. In this article, we introduce the fundamentals of FLP-MIMO systems, including hardware design, structure design, and potential applications. We shall demonstrate that FLP-MIMO, using fewer flexible antennas, can match the channel hardening achieved by a large number of fixed antennas. We will then analyze the SE-EE relationship for FLP-MIMO and fixed-position MIMO. Furthermore, we will design the optimal trajectory of flexible antennas to maximize system sum SE or total EE at a fixed travel distance of each antenna. Finally, several important research directions regarding FLP-MIMO communications are presented to facilitate further investigation.

Optimal ski route selection is a challenge based on a multitude of factors, such as the steepness, compass direction, or crowdedness. The personal preferences of every skier towards these factors require individual adaptations, which aggravate this task. Current approaches within this domain do not combine automated routing capabilities with user preferences, missing out on the possibility of integrating domain knowledge in the analysis process. We introduce SkiVis, a visual analytics application to interactively explore ski slopes and provide routing recommendations based on user preferences. In collaboration with ski guides and enthusiasts, we elicited requirements and guidelines for such an application and propose different workflows depending on the skiers' familiarity with the resort. In a case study on the resort of Ski Arlberg, we illustrate how to leverage volunteered geographic information to enable a numerical comparison between slopes. We evaluated our approach through a pair-analytics study and demonstrate how it supports skiers in discovering relevant and preference-based ski routes. Besides the tasks investigated in the study, we derive additional use cases from the interviews that showcase the further potential of SkiVis, and contribute directions for further research opportunities.

We introduce the Density Formula for (topological) drawings of graphs in the plane or on the sphere, which relates the number of edges, vertices, crossings, and sizes of cells in the drawing. We demonstrate its capability by providing several applications: we prove tight upper bounds on the edge density of various beyond-planar graph classes, including so-called $k$-planar graphs with $k=1,2$, fan-crossing / fan-planar graphs, $k$-bend RAC-graphs with $k=0,1,2$, and quasiplanar graphs. In some cases ($1$-bend and $2$-bend RAC-graphs and fan-crossing / fan-planar graphs), we thereby obtain the first tight upper bounds on the edge density of the respective graph classes. In other cases, we give new streamlined and significantly shorter proofs for bounds that were already known in the literature. Thanks to the Density Formula, all of our proofs are mostly elementary counting and mostly circumvent the typical intricate case analysis found in earlier proofs. Further, in some cases (simple and non-homotopic quasiplanar graphs), our alternative proofs using the Density Formula lead to the first tight lower bound examples.

Dense prediction tasks, such as semantic segmentation, depth estimation, and surface normal prediction, can be easily formulated as per-pixel classification (discrete outputs) or regression (continuous outputs). This per-pixel prediction paradigm has remained popular due to the prevalence of fully convolutional networks. However, on the recent frontier of segmentation task, the community has been witnessing a shift of paradigm from per-pixel prediction to cluster-prediction with the emergence of transformer architectures, particularly the mask transformers, which directly predicts a label for a mask instead of a pixel. Despite this shift, methods based on the per-pixel prediction paradigm still dominate the benchmarks on the other dense prediction tasks that require continuous outputs, such as depth estimation and surface normal prediction. Motivated by the success of DORN and AdaBins in depth estimation, achieved by discretizing the continuous output space, we propose to generalize the cluster-prediction based method to general dense prediction tasks. This allows us to unify dense prediction tasks with the mask transformer framework. Remarkably, the resulting model PolyMaX demonstrates state-of-the-art performance on three benchmarks of NYUD-v2 dataset. We hope our simple yet effective design can inspire more research on exploiting mask transformers for more dense prediction tasks. Code and model will be made available.

Graphs are used widely to model complex systems, and detecting anomalies in a graph is an important task in the analysis of complex systems. Graph anomalies are patterns in a graph that do not conform to normal patterns expected of the attributes and/or structures of the graph. In recent years, graph neural networks (GNNs) have been studied extensively and have successfully performed difficult machine learning tasks in node classification, link prediction, and graph classification thanks to the highly expressive capability via message passing in effectively learning graph representations. To solve the graph anomaly detection problem, GNN-based methods leverage information about the graph attributes (or features) and/or structures to learn to score anomalies appropriately. In this survey, we review the recent advances made in detecting graph anomalies using GNN models. Specifically, we summarize GNN-based methods according to the graph type (i.e., static and dynamic), the anomaly type (i.e., node, edge, subgraph, and whole graph), and the network architecture (e.g., graph autoencoder, graph convolutional network). To the best of our knowledge, this survey is the first comprehensive review of graph anomaly detection methods based on GNNs.

Images can convey rich semantics and induce various emotions in viewers. Recently, with the rapid advancement of emotional intelligence and the explosive growth of visual data, extensive research efforts have been dedicated to affective image content analysis (AICA). In this survey, we will comprehensively review the development of AICA in the recent two decades, especially focusing on the state-of-the-art methods with respect to three main challenges -- the affective gap, perception subjectivity, and label noise and absence. We begin with an introduction to the key emotion representation models that have been widely employed in AICA and description of available datasets for performing evaluation with quantitative comparison of label noise and dataset bias. We then summarize and compare the representative approaches on (1) emotion feature extraction, including both handcrafted and deep features, (2) learning methods on dominant emotion recognition, personalized emotion prediction, emotion distribution learning, and learning from noisy data or few labels, and (3) AICA based applications. Finally, we discuss some challenges and promising research directions in the future, such as image content and context understanding, group emotion clustering, and viewer-image interaction.

In multi-turn dialog, utterances do not always take the full form of sentences \cite{Carbonell1983DiscoursePA}, which naturally makes understanding the dialog context more difficult. However, it is essential to fully grasp the dialog context to generate a reasonable response. Hence, in this paper, we propose to improve the response generation performance by examining the model's ability to answer a reading comprehension question, where the question is focused on the omitted information in the dialog. Enlightened by the multi-task learning scheme, we propose a joint framework that unifies these two tasks, sharing the same encoder to extract the common and task-invariant features with different decoders to learn task-specific features. To better fusing information from the question and the dialog history in the encoding part, we propose to augment the Transformer architecture with a memory updater, which is designed to selectively store and update the history dialog information so as to support downstream tasks. For the experiment, we employ human annotators to write and examine a large-scale dialog reading comprehension dataset. Extensive experiments are conducted on this dataset, and the results show that the proposed model brings substantial improvements over several strong baselines on both tasks. In this way, we demonstrate that reasoning can indeed help better response generation and vice versa. We release our large-scale dataset for further research.

Image segmentation is still an open problem especially when intensities of the interested objects are overlapped due to the presence of intensity inhomogeneity (also known as bias field). To segment images with intensity inhomogeneities, a bias correction embedded level set model is proposed where Inhomogeneities are Estimated by Orthogonal Primary Functions (IEOPF). In the proposed model, the smoothly varying bias is estimated by a linear combination of a given set of orthogonal primary functions. An inhomogeneous intensity clustering energy is then defined and membership functions of the clusters described by the level set function are introduced to rewrite the energy as a data term of the proposed model. Similar to popular level set methods, a regularization term and an arc length term are also included to regularize and smooth the level set function, respectively. The proposed model is then extended to multichannel and multiphase patterns to segment colourful images and images with multiple objects, respectively. It has been extensively tested on both synthetic and real images that are widely used in the literature and public BrainWeb and IBSR datasets. Experimental results and comparison with state-of-the-art methods demonstrate that advantages of the proposed model in terms of bias correction and segmentation accuracy.

北京阿比特科技有限公司