亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The quadrature-based method of moments (QMOM) offers a promising class of approximation techniques for reducing kinetic equations to fluid equations that are valid beyond thermodynamic equilibrium. A major challenge with these and other closures is that whenever the flux function must be evaluated (e.g., in a numerical update), a moment-inversion problem must be solved that computes the flux from the known input moments. In this work we study a particular five-moment variant of QMOM known as HyQMOM and establish that this system is moment-invertible over a convex region in solution space. We then develop a high-order Lax-Wendroff discontinuous Galerkin scheme for solving the resulting fluid system. The scheme is based on a predictor-corrector approach, where the prediction step is a localized space-time discontinuous Galerkin scheme. The nonlinear algebraic system that arises in this prediction step is solved using a Picard iteration. The correction step is a straightforward explicit update using the predicted solution in order to evaluate space-time flux integrals. In the absence of additional limiters, the proposed high-order scheme does not in general guarantee that the numerical solution remains in the convex set over which HyQMOM is moment-invertible. To overcome this challenge, we introduce novel limiters that rigorously guarantee that the computed solution does not leave the convex set over which moment-invertible and hyperbolicity of the fluid system is guaranteed. We develop positivity-preserving limiters in both the prediction and correction steps, as well as an oscillation-limiter that damps unphysical oscillations near shocks and rarefactions. Finally, we perform convergence tests to verify the order of accuracy of the scheme, as well as test the scheme on Riemann data to demonstrate the shock-capturing and robustness of the method.

相關內容

We present a discontinuous Galerkin internal-penalty scheme that is applicable to a large class of linear and nonlinear elliptic partial differential equations. The unified scheme can accommodate all second-order elliptic equations that can be formulated in first-order flux form, encompassing problems in linear elasticity, general relativity, and hydrodynamics, including problems formulated on a curved manifold. It allows for a wide range of linear and nonlinear boundary conditions, and accommodates curved and nonconforming meshes. Our generalized internal-penalty numerical flux and our Schur-complement strategy of eliminating auxiliary degrees of freedom make the scheme compact without requiring equation-specific modifications. We demonstrate the accuracy of the scheme for a suite of numerical test problems. The scheme is implemented in the open-source SpECTRE numerical relativity code.

In this article, we propose a higher order approximation to Caputo fractional (C-F) derivative using graded mesh and standard central difference approximation for space derivatives, in order to obtain the approximate solution of time fractional partial differential equations (TFPDE). The proposed approximation for C-F derivative tackles the singularity at origin effectively and is easily applicable to diverse problems. The stability analysis and truncation error bounds of the proposed scheme are discussed, along with this, analyzed the required regularity of the solution. Few numerical examples are presented to support the theory.

Element Method. The Finite Volume Method guarantees local and global mass conservation. A property not satisfied by the Finite Volume Method. On the down side, the Finite Volume Method requires non trivial modifications to attain high order approximations unlike the Finite Volume Method. It has been contended that the Discontinuous Galerkin Method, locally conservative and high order, is a natural progression for Coastal Ocean Modeling. Consequently, as a primer we consider the vertical ocean-slice model with the inclusion of density effects. To solve these non steady Partial Differential Equations, we develop a pressure projection method for solution. We propose a Hybridized Discontinuous Galerkin solution for the required Poisson Problem in each time step. The purpose, is to reduce the computational cost of classical applications of the Discontinuous Galerkin method. The Hybridized Discontinuous Galerkin method is first presented as a general elliptic problem solver. It is shown that a high order implementation yields fast and accurate approximations on coarse meshes.

We consider Broyden's method and some accelerated schemes for nonlinear equations having a strongly regular singularity of first order with a one-dimensional nullspace. Our two main results are as follows. First, we show that the use of a preceding Newton-like step ensures convergence for starting points in a starlike domain with density 1. This extends the domain of convergence of these methods significantly. Second, we establish that the matrix updates of Broyden's method converge q-linearly with the same asymptotic factor as the iterates. This contributes to the long-standing question whether the Broyden matrices converge by showing that this is indeed the case for the setting at hand. Furthermore, we prove that the Broyden directions violate uniform linear independence, which implies that existing results for convergence of the Broyden matrices cannot be applied. Numerical experiments of high precision confirm the enlarged domain of convergence, the q-linear convergence of the matrix updates, and the lack of uniform linear independence. In addition, they suggest that these results can be extended to singularities of higher order and that Broyden's method can converge r-linearly without converging q-linearly. The underlying code is freely available.

We consider a moving boundary problem with kinetic condition that describes the diffusion of solvent into rubber and study semi-discrete finite element approximations of the corresponding weak solutions. We report on both a priori and a posteriori error estimates for the mass concentration of the diffusants, and respectively, for the a priori unknown position of the moving boundary. Our working techniques include integral and energy-based estimates for a nonlinear parabolic problem posed in a transformed fixed domain combined with a suitable use of the interpolation-trace inequality to handle the interface terms. Numerical illustrations of our FEM approximations are within the experimental range and show good agreement with our theoretical investigation. This work is a preliminary investigation necessary before extending the current moving boundary modeling to account explicitly for the mechanics of hyperelastic rods to capture a directional swelling of the underlying elastomer.

This paper considers the temporal discretization of an inverse problem subject to a time fractional diffusion equation. Firstly, the convergence of the L1 scheme is established with an arbitrary sectorial operator of spectral angle $< \pi/2 $, that is the resolvent set of this operator contains $ \{z\in\mathbb C\setminus\{0\}:\ |\operatorname{Arg} z|< \theta\}$ for some $ \pi/2 < \theta < \pi $. The relationship between the time fractional order $\alpha \in (0, 1)$ and the constants in the error estimates is precisely characterized, revealing that the L1 scheme is robust as $ \alpha $ approaches $ 1 $. Then an inverse problem of a fractional diffusion equation is analyzed, and the convergence analysis of a temporal discretization of this inverse problem is given. Finally, numerical results are provided to confirm the theoretical results.

In this paper, a nonlinear system of fractional ordinary differential equations with multiple scales in time is investigated. We are interested in the effective long-term computation of the solution. The main challenge is how to obtain the solution of the coupled problem at a lower computational cost. We analysize a multiscale method for the nonlinear system where the fast system has a periodic applied force and the slow equation contains fractional derivatives as a simplication of the atherosclerosis with a plaque growth. A local periodic equation is derived to approximate the original system and the error estimates are given. Then a finite difference method is designed to approximate the original and the approximate problems. We construct four examples, including three with exact solutions and one following the original problem setting, to test the accuracy and computational efficiency of the proposed method. It is observed that, the computational time is very much reduced and the multiscale method performs very well in comparison to fully resolved simulation for the case of small time scale separation. The larger the time scale separation is, the more effective the multiscale method is.

For the general class of residual distribution (RD) schemes, including many finite element (such as continuous/discontinuous Galerkin) and flux reconstruction methods, an approach to construct entropy conservative/ dissipative semidiscretizations by adding suitable correction terms has been proposed by Abgrall (J.~Comp.~Phys. 372: pp. 640--666, 2018). In this work, the correction terms are characterized as solutions of certain optimization problems and are adapted to the SBP-SAT framework, focusing on discontinuous Galerkin methods. Novel generalizations to entropy inequalities, multiple constraints, and kinetic energy preservation for the Euler equations are developed and tested in numerical experiments. For all of these optimization problems, explicit solutions are provided. Additionally, the correction approach is applied for the first time to obtain a fully discrete entropy conservative/dissipative RD scheme. Here, the application of the deferred correction (DeC) method for the time integration is essential. This paper can be seen as describing a systematic method to construct structure preserving discretization, at least for the considered example.

The aim of this paper is to study the recovery of a spatially dependent potential in a (sub)diffusion equation from overposed final time data. We construct a monotone operator one of whose fixed points is the unknown potential. The uniqueness of the identification is theoretically verified by using the monotonicity of the operator and a fixed point argument. Moreover, we show a conditional stability in Hilbert spaces under some suitable conditions on the problem data. Next, a completely discrete scheme is developed, by using Galerkin finite element method in space and finite difference method in time, and then a fixed point iteration is applied to reconstruct the potential. We prove the linear convergence of the iterative algorithm by the contraction mapping theorem, and present a thorough error analysis for the reconstructed potential. Our derived \textsl{a priori} error estimate provides a guideline to choose discretization parameters according to the noise level. The analysis relies heavily on some suitable nonstandard error estimates for the direct problem as well as the aforementioned conditional stability. Numerical experiments are provided to illustrate and complement our theoretical analysis.

The radiative transfer equation is a fundamental equation in transport theory and applications, which is a 5-dimensional PDE in the stationary one-velocity case, leading to great difficulties in numerical simulation. To tackle this bottleneck, we first use the discrete ordinate technique to discretize the scattering term, an integral with respect to the angular variables, resulting in a semi-discrete hyperbolic system. Then, we make the spatial discretization by means of the discontinuous Galerkin (DG) method combined with the sparse grid method. The final linear system is solved by the block Gauss-Seidal iteration method. The computational complexity and error analysis are developed in detail, which show the new method is more efficient than the original discrete ordinate DG method. A series of numerical results are performed to validate the convergence behavior and effectiveness of the proposed method.

北京阿比特科技有限公司