We develop and evaluate multilingual scientific documents similarity measurement models in this work. Such models can be used to find related works in different languages, which can help multilingual researchers find and explore papers more efficiently. We propose the first multilingual scientific documents dataset, Open-access Multilingual Scientific Documents (OpenMSD), which has 74M papers in 103 languages and 778M citation pairs. With OpenMSD, we pretrain science-specialized language models, and explore different strategies to derive "related" paper pairs to fine-tune the models, including using a mixture of citation, co-citation, and bibliographic-coupling pairs. To further improve the models' performance for non-English papers, we explore the use of generative language models to enrich the non-English papers with English summaries. This allows us to leverage the models' English capabilities to create better representations for non-English papers. Our best model significantly outperforms strong baselines by 7-16% (in mean average precision).
The social graphs synthesized by the generative models are increasingly in demand due to data scarcity and concerns over user privacy. One of the key performance criteria for generating social networks is the fidelity to specified conditionals, such as users with certain membership and financial status. While recent diffusion models have shown remarkable performance in generating images, their effectiveness in synthesizing graphs has not yet been explored in the context of conditional social graphs. In this paper, we propose the first kind of conditional diffusion model for social networks, CDGraph, which trains and synthesizes graphs based on two specified conditions. We propose the co-evolution dependency in the denoising process of CDGraph to capture the mutual dependencies between the dual conditions and further incorporate social homophily and social contagion to preserve the connectivity between nodes while satisfying the specified conditions. Moreover, we introduce a novel classifier loss, which guides the training of the diffusion process through the mutual dependency of dual conditions. We evaluate CDGraph against four existing graph generative methods, i.e., SPECTRE, GSM, EDGE, and DiGress, on four datasets. Our results show that the generated graphs from CDGraph achieve much higher dual-conditional validity and lower discrepancy in various social network metrics than the baselines, thus demonstrating its proficiency in generating dual-conditional social graphs.
Generated texts from large language models (LLMs) are remarkably close to high-quality human-authored text, raising concerns about their potential misuse in spreading false information and academic misconduct. Consequently, there is an urgent need for a highly practical detection tool capable of accurately identifying the source of a given text. However, existing detection tools typically rely on access to LLMs and can only differentiate between machine-generated and human-authored text, failing to meet the requirements of fine-grained tracing, intermediary judgment, and rapid detection. Therefore, we propose LLMDet, a model-specific, secure, efficient, and extendable detection tool, that can source text from specific LLMs, such as GPT-2, OPT, LLaMA, and others. In LLMDet, we record the next-token probabilities of salient n-grams as features to calculate proxy perplexity for each LLM. By jointly analyzing the proxy perplexities of LLMs, we can determine the source of the generated text. Experimental results show that LLMDet yields impressive detection performance while ensuring speed and security, achieving 98.54% precision and x5.0 faster for recognizing human-authored text. Additionally, LLMDet can effortlessly extend its detection capabilities to a new open-source model. We will provide an open-source tool at //github.com/TrustedLLM/LLMDet.
We introduce FacadeNet, a deep learning approach for synthesizing building facade images from diverse viewpoints. Our method employs a conditional GAN, taking a single view of a facade along with the desired viewpoint information and generates an image of the facade from the distinct viewpoint. To precisely modify view-dependent elements like windows and doors while preserving the structure of view-independent components such as walls, we introduce a selective editing module. This module leverages image embeddings extracted from a pre-trained vision transformer. Our experiments demonstrated state-of-the-art performance on building facade generation, surpassing alternative methods.
Quality Assurance (QA) is pivotal in product development. Despite the advent of automated methods, software testing, especially for REST APIs, often involves repetitive tasks. It's notable that more resources are allocated to script tests than in detecting and addressing the actual bugs. Conventional testing methods also struggle to adapt seamlessly to software updates. However, with strides in data science, the concept of a self-reliant testing framework emerges. This framework aims for minimal user intervention and is designed to autonomously execute the entire REST API testing procedure. Our research is centered around realizing this groundbreaking framework.
Interpretability methods are developed to understand the working mechanisms of black-box models, which is crucial to their responsible deployment. Fulfilling this goal requires both that the explanations generated by these methods are correct and that people can easily and reliably understand them. While the former has been addressed in prior work, the latter is often overlooked, resulting in informal model understanding derived from a handful of local explanations. In this paper, we introduce explanation summary (ExSum), a mathematical framework for quantifying model understanding, and propose metrics for its quality assessment. On two domains, ExSum highlights various limitations in the current practice, helps develop accurate model understanding, and reveals easily overlooked properties of the model. We also connect understandability to other properties of explanations such as human alignment, robustness, and counterfactual minimality and plausibility.
Many scientific problems require to process data in the form of geometric graphs. Unlike generic graph data, geometric graphs exhibit symmetries of translations, rotations, and/or reflections. Researchers have leveraged such inductive bias and developed geometrically equivariant Graph Neural Networks (GNNs) to better characterize the geometry and topology of geometric graphs. Despite fruitful achievements, it still lacks a survey to depict how equivariant GNNs are progressed, which in turn hinders the further development of equivariant GNNs. To this end, based on the necessary but concise mathematical preliminaries, we analyze and classify existing methods into three groups regarding how the message passing and aggregation in GNNs are represented. We also summarize the benchmarks as well as the related datasets to facilitate later researches for methodology development and experimental evaluation. The prospect for future potential directions is also provided.
We present CoDEx, a set of knowledge graph completion datasets extracted from Wikidata and Wikipedia that improve upon existing knowledge graph completion benchmarks in scope and level of difficulty. In terms of scope, CoDEx comprises three knowledge graphs varying in size and structure, multilingual descriptions of entities and relations, and tens of thousands of hard negative triples that are plausible but verified to be false. To characterize CoDEx, we contribute thorough empirical analyses and benchmarking experiments. First, we analyze each CoDEx dataset in terms of logical relation patterns. Next, we report baseline link prediction and triple classification results on CoDEx for five extensively tuned embedding models. Finally, we differentiate CoDEx from the popular FB15K-237 knowledge graph completion dataset by showing that CoDEx covers more diverse and interpretable content, and is a more difficult link prediction benchmark. Data, code, and pretrained models are available at //bit.ly/2EPbrJs.
The design of deep graph models still remains to be investigated and the crucial part is how to explore and exploit the knowledge from different hops of neighbors in an efficient way. In this paper, we propose a novel RNN-like deep graph neural network architecture by incorporating AdaBoost into the computation of network; and the proposed graph convolutional network called AdaGCN~(AdaBoosting Graph Convolutional Network) has the ability to efficiently extract knowledge from high-order neighbors and integrate knowledge from different hops of neighbors into the network in an AdaBoost way. We also present the architectural difference between AdaGCN and existing graph convolutional methods to show the benefits of our proposal. Finally, extensive experiments demonstrate the state-of-the-art prediction performance and the computational advantage of our approach AdaGCN.
Graph convolutional networks (GCNs) have recently become one of the most powerful tools for graph analytics tasks in numerous applications, ranging from social networks and natural language processing to bioinformatics and chemoinformatics, thanks to their ability to capture the complex relationships between concepts. At present, the vast majority of GCNs use a neighborhood aggregation framework to learn a continuous and compact vector, then performing a pooling operation to generalize graph embedding for the classification task. These approaches have two disadvantages in the graph classification task: (1)when only the largest sub-graph structure ($k$-hop neighbor) is used for neighborhood aggregation, a large amount of early-stage information is lost during the graph convolution step; (2) simple average/sum pooling or max pooling utilized, which loses the characteristics of each node and the topology between nodes. In this paper, we propose a novel framework called, dual attention graph convolutional networks (DAGCN) to address these problems. DAGCN automatically learns the importance of neighbors at different hops using a novel attention graph convolution layer, and then employs a second attention component, a self-attention pooling layer, to generalize the graph representation from the various aspects of a matrix graph embedding. The dual attention network is trained in an end-to-end manner for the graph classification task. We compare our model with state-of-the-art graph kernels and other deep learning methods. The experimental results show that our framework not only outperforms other baselines but also achieves a better rate of convergence.
This paper surveys the machine learning literature and presents machine learning as optimization models. Such models can benefit from the advancement of numerical optimization techniques which have already played a distinctive role in several machine learning settings. Particularly, mathematical optimization models are presented for commonly used machine learning approaches for regression, classification, clustering, and deep neural networks as well new emerging applications in machine teaching and empirical model learning. The strengths and the shortcomings of these models are discussed and potential research directions are highlighted.