Robot navigation in dynamic environments shared with humans is an important but challenging task, which suffers from performance deterioration as the crowd grows. In this paper, multi-subgoal robot navigation approach based on deep reinforcement learning is proposed, which can reason about more comprehensive relationships among all agents (robot and humans). Specifically, the next position point is planned for the robot by introducing history information and interactions in our work. Firstly, based on subgraph network, the history information of all agents is aggregated before encoding interactions through a graph neural network, so as to improve the ability of the robot to anticipate the future scenarios implicitly. Further consideration, in order to reduce the probability of unreliable next position points, the selection module is designed after policy network in the reinforcement learning framework. In addition, the next position point generated from the selection module satisfied the task requirements better than that obtained directly from the policy network. The experiments demonstrate that our approach outperforms state-of-the-art approaches in terms of both success rate and collision rate, especially in crowded human environments.
Motion prediction for automated vehicles in complex environments is a difficult task that is to be mastered when automated vehicles are to be used in arbitrary situations. Many factors influence the future motion of traffic participants starting with traffic rules and reaching from the interaction between each other to personal habits of human drivers. Therefore we present a novel approach for a graph-based prediction based on a heterogeneous holistic graph representation that combines temporal information, properties and relations between traffic participants as well as relations with static elements like the road network. The information are encoded through different types of nodes and edges that both are enriched with arbitrary features. We evaluated the approach on the INTERACTION and the Argoverse dataset and conducted an informative ablation study to demonstrate the benefit of different types of information for the motion prediction quality.
Due to the emergence of graph neural networks (GNNs) and their widespread implementation in real-world scenarios, the fairness and privacy of GNNs have attracted considerable interest since they are two essential social concerns in the era of building trustworthy GNNs. Existing studies have respectively explored the fairness and privacy of GNNs and exhibited that both fairness and privacy are at the cost of GNN performance. However, the interaction between them is yet to be explored and understood. In this paper, we investigate the interaction between the fairness of a GNN and its privacy for the first time. We empirically identify that edge privacy risks increase when the individual fairness of nodes is improved. Next, we present the intuition behind such a trade-off and employ the influence function and Pearson correlation to measure it theoretically. To take the performance, fairness, and privacy of GNNs into account simultaneously, we propose implementing fairness-aware reweighting and privacy-aware graph structure perturbation modules in a retraining mechanism. Experimental results demonstrate that our method is effective in implementing GNN fairness with limited performance cost and restricted privacy risks.
The spread of rumors along with breaking events seriously hinders the truth in the era of social media. Previous studies reveal that due to the lack of annotated resources, rumors presented in minority languages are hard to be detected. Furthermore, the unforeseen breaking events not involved in yesterday's news exacerbate the scarcity of data resources. In this work, we propose a novel zero-shot framework based on prompt learning to detect rumors falling in different domains or presented in different languages. More specifically, we firstly represent rumor circulated on social media as diverse propagation threads, then design a hierarchical prompt encoding mechanism to learn language-agnostic contextual representations for both prompts and rumor data. To further enhance domain adaptation, we model the domain-invariant structural features from the propagation threads, to incorporate structural position representations of influential community response. In addition, a new virtual response augmentation method is used to improve model training. Extensive experiments conducted on three real-world datasets demonstrate that our proposed model achieves much better performance than state-of-the-art methods and exhibits a superior capacity for detecting rumors at early stages.
LiDAR devices are widely used in autonomous driving scenarios and researches on 3D point cloud achieve remarkable progress over the past years. However, deep learning-based methods heavily rely on the annotation data and often face the domain generalization problem. Unlike 2D images whose domains are usually related to the texture information, the feature extracted from the 3D point cloud is affected by the distribution of the points. Due to the lack of a 3D domain adaptation benchmark, the common practice is to train the model on one benchmark (e.g, Waymo) and evaluate it on another dataset (e.g. KITTI). However, in this setting, there are two types of domain gaps, the scenarios domain, and sensors domain, making the evaluation and analysis complicated and difficult. To handle this situation, we propose LiDAR Dataset with Cross-Sensors (LiDAR-CS Dataset), which contains large-scale annotated LiDAR point cloud under 6 groups of different sensors but with same corresponding scenarios, captured from hybrid realistic LiDAR simulator. As far as we know, LiDAR-CS Dataset is the first dataset focused on the sensor (e.g., the points distribution) domain gaps for 3D object detection in real traffic. Furthermore, we evaluate and analyze the performance with several baseline detectors on the LiDAR-CS benchmark and show its applications.
Understanding the interaction between different road users is critical for road safety and automated vehicles (AVs). Existing mathematical models on this topic have been proposed based mostly on either cognitive or machine learning (ML) approaches. However, current cognitive models are incapable of simulating road user trajectories in general scenarios, and ML models lack a focus on the mechanisms generating the behavior and take a high-level perspective which can cause failures to capture important human-like behaviors. Here, we develop a model of human pedestrian crossing decisions based on computational rationality, an approach using deep reinforcement learning (RL) to learn boundedly optimal behavior policies given human constraints, in our case a model of the limited human visual system. We show that the proposed combined cognitive-RL model captures human-like patterns of gap acceptance and crossing initiation time. Interestingly, our model's decisions are sensitive to not only the time gap, but also the speed of the approaching vehicle, something which has been described as a "bias" in human gap acceptance behavior. However, our results suggest that this is instead a rational adaption to human perceptual limitations. Moreover, we demonstrate an approach to accounting for individual differences in computational rationality models, by conditioning the RL policy on the parameters of the human constraints. Our results demonstrate the feasibility of generating more human-like road user behavior by combining RL with cognitive models.
KGCleaner is a framework to identify and correct errors in data produced and delivered by an information extraction system. These tasks have been understudied and KGCleaner is the first to address both. We introduce a multi-task model that jointly learns to predict if an extracted relation is credible and repair it if not. We evaluate our approach and other models as instance of our framework on two collections: a Wikidata corpus of nearly 700K facts and 5M fact-relevant sentences and a collection of 30K facts from the 2015 TAC Knowledge Base Population task. For credibility classification, parameter efficient simple shallow neural network can achieve an absolute performance gain of 30 $F_1$ points on Wikidata and comparable performance on TAC. For the repair task, significant performance (at more than twice) gain can be obtained depending on the nature of the dataset and the models.
Maximization of mutual information between the model's input and output is formally related to "decisiveness" and "fairness" of the softmax predictions, motivating such unsupervised entropy-based losses for discriminative neural networks. Recent self-labeling methods based on such losses represent the state of the art in deep clustering. However, some important properties of entropy clustering are not well-known, or even misunderstood. For example, we provide a counterexample to prior claims about equivalence to variance clustering (K-means) and point out technical mistakes in such theories. We discuss the fundamental differences between these discriminative and generative clustering approaches. Moreover, we show the susceptibility of standard entropy clustering to narrow margins and motivate an explicit margin maximization term. We also propose an improved self-labeling loss; it is robust to pseudo-labeling errors and enforces stronger fairness. We develop an EM algorithm for our loss that is significantly faster than the standard alternatives. Our results improve the state-of-the-art on standard benchmarks.
Trust has emerged as a key factor in people's interactions with AI-infused systems. Yet, little is known about what models of trust have been used and for what systems: robots, virtual characters, smart vehicles, decision aids, or others. Moreover, there is yet no known standard approach to measuring trust in AI. This scoping review maps out the state of affairs on trust in human-AI interaction (HAII) from the perspectives of models, measures, and methods. Findings suggest that trust is an important and multi-faceted topic of study within HAII contexts. However, most work is under-theorized and under-reported, generally not using established trust models and missing details about methods, especially Wizard of Oz. We offer several targets for systematic review work as well as a research agenda for combining the strengths and addressing the weaknesses of the current literature.
Knowledge graph completion aims to predict missing relations between entities in a knowledge graph. While many different methods have been proposed, there is a lack of a unifying framework that would lead to state-of-the-art results. Here we develop PathCon, a knowledge graph completion method that harnesses four novel insights to outperform existing methods. PathCon predicts relations between a pair of entities by: (1) Considering the Relational Context of each entity by capturing the relation types adjacent to the entity and modeled through a novel edge-based message passing scheme; (2) Considering the Relational Paths capturing all paths between the two entities; And, (3) adaptively integrating the Relational Context and Relational Path through a learnable attention mechanism. Importantly, (4) in contrast to conventional node-based representations, PathCon represents context and path only using the relation types, which makes it applicable in an inductive setting. Experimental results on knowledge graph benchmarks as well as our newly proposed dataset show that PathCon outperforms state-of-the-art knowledge graph completion methods by a large margin. Finally, PathCon is able to provide interpretable explanations by identifying relations that provide the context and paths that are important for a given predicted relation.
Meta-learning extracts the common knowledge acquired from learning different tasks and uses it for unseen tasks. It demonstrates a clear advantage on tasks that have insufficient training data, e.g., few-shot learning. In most meta-learning methods, tasks are implicitly related via the shared model or optimizer. In this paper, we show that a meta-learner that explicitly relates tasks on a graph describing the relations of their output dimensions (e.g., classes) can significantly improve the performance of few-shot learning. This type of graph is usually free or cheap to obtain but has rarely been explored in previous works. We study the prototype based few-shot classification, in which a prototype is generated for each class, such that the nearest neighbor search between the prototypes produces an accurate classification. We introduce "Gated Propagation Network (GPN)", which learns to propagate messages between prototypes of different classes on the graph, so that learning the prototype of each class benefits from the data of other related classes. In GPN, an attention mechanism is used for the aggregation of messages from neighboring classes, and a gate is deployed to choose between the aggregated messages and the message from the class itself. GPN is trained on a sequence of tasks from many-shot to few-shot generated by subgraph sampling. During training, it is able to reuse and update previously achieved prototypes from the memory in a life-long learning cycle. In experiments, we change the training-test discrepancy and test task generation settings for thorough evaluations. GPN outperforms recent meta-learning methods on two benchmark datasets in all studied cases.