亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper introduces the open-source framework, GIRA, which implements fundamental robotics algorithms for reconstruction, pose estimation, and occupancy modeling using compact generative models. Compactness enables perception in the large by ensuring that the perceptual models can be communicated through low-bandwidth channels during large-scale mobile robot deployments. The generative property enables perception in the small by providing high-resolution reconstruction capability. These properties address perception needs for diverse robotic applications, including multi-robot exploration and dexterous manipulation. State-of-the-art perception systems construct perceptual models via multiple disparate pipelines that reuse the same underlying sensor data, which leads to increased computation, redundancy, and complexity. GIRA bridges this gap by providing a unified perceptual modeling framework using Gaussian mixture models (GMMs) as well as a novel systems contribution, which consists of GPU-accelerated functions to learn GMMs 10-100x faster compared to existing CPU implementations. Because few GMM-based frameworks are open-sourced, this work seeks to accelerate innovation and broaden adoption of these techniques.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · Learning · MoDELS · 知識 (knowledge) · PTM ·
2024 年 4 月 23 日

Nowadays, real-world applications often face streaming data, which requires the learning system to absorb new knowledge as data evolves. Continual Learning (CL) aims to achieve this goal and meanwhile overcome the catastrophic forgetting of former knowledge when learning new ones. Typical CL methods build the model from scratch to grow with incoming data. However, the advent of the pre-trained model (PTM) era has sparked immense research interest, particularly in leveraging PTMs' robust representational capabilities. This paper presents a comprehensive survey of the latest advancements in PTM-based CL. We categorize existing methodologies into three distinct groups, providing a comparative analysis of their similarities, differences, and respective advantages and disadvantages. Additionally, we offer an empirical study contrasting various state-of-the-art methods to highlight concerns regarding fairness in comparisons. The source code to reproduce these evaluations is available at: //github.com/sun-hailong/LAMDA-PILOT

The design space exploration of scaled-out manycores for communication-intensive applications (e.g., graph analytics and sparse linear algebra) is hampered due to either lack of scalability or accuracy of existing frameworks at simulating data-dependent execution patterns. This paper presents MuchiSim, a novel parallel simulator designed to address these challenges when exploring the design space of distributed multi-chiplet manycore architectures. We evaluate MuchiSim at simulating systems with up to a million interconnected processing units (PUs) while modeling data movement and communication cycle by cycle. In addition to performance, MuchiSim reports the energy, area, and cost of the simulated system. It also comes with a benchmark application suite and two data visualization tools. MuchiSim supports various parallelization strategies and communication primitives such as task-based parallelization and message passing, making it highly relevant for architectures with software-managed coherence and distributed memory. Via a case study, we show that MuchiSim helps users explore the balance between memory and computation units and the constraints related to chiplet integration and inter-chip communication. MuchiSim enables evaluating new techniques or design parameters for systems at scales that are more realistic for modern parallel systems, opening the gate for further research in this area.

We present a versatile NeRF-based simulator for testing autonomous driving (AD) software systems, designed with a focus on sensor-realistic closed-loop evaluation and the creation of safety-critical scenarios. The simulator learns from sequences of real-world driving sensor data and enables reconfigurations and renderings of new, unseen scenarios. In this work, we use our simulator to test the responses of AD models to safety-critical scenarios inspired by the European New Car Assessment Programme (Euro NCAP). Our evaluation reveals that, while state-of-the-art end-to-end planners excel in nominal driving scenarios in an open-loop setting, they exhibit critical flaws when navigating our safety-critical scenarios in a closed-loop setting. This highlights the need for advancements in the safety and real-world usability of end-to-end planners. By publicly releasing our simulator and scenarios as an easy-to-run evaluation suite, we invite the research community to explore, refine, and validate their AD models in controlled, yet highly configurable and challenging sensor-realistic environments. Code and instructions can be found at //github.com/atonderski/neuro-ncap

Context. In the post-pandemic era, software professionals resist returning to office routines, favoring the flexibility gained from remote work. Hybrid work structures, then, become popular within software companies, allowing them to choose not to work in the office every day, preserving flexibility, and creating several benefits, including an increase in the support for underrepresented groups in software development. Goal. We investigated how software professionals from underrepresented groups are experiencing post-pandemic hybrid work. In particular, we analyzed the experiences of neurodivergents, LGBTQIA+ individuals, and people with disabilities working in the software industry. Method. We conducted a case study focusing on the underrepresented groups within a well-established South American software company. Results. Hybrid work is preferred by software professionals from underrepresented groups in the post-pandemic era. Advantages include improved focus at home, personalized work setups, and accommodation for health treatments. Concerns arise about isolation and inadequate infrastructure support, highlighting the need for proactive organizational strategies. Conclusions. Hybrid work emerges as a promising strategy for fostering diversity and inclusion in software engineering, addressing past limitations of the traditional office environment.

Large ground-truth datasets and recent advances in deep learning techniques have been useful for layout detection. However, because of the restricted layout diversity of these datasets, training on them requires a sizable number of annotated instances, which is both expensive and time-consuming. As a result, differences between the source and target domains may significantly impact how well these models function. To solve this problem, domain adaptation approaches have been developed that use a small quantity of labeled data to adjust the model to the target domain. In this research, we introduced a synthetic document dataset called RanLayNet, enriched with automatically assigned labels denoting spatial positions, ranges, and types of layout elements. The primary aim of this endeavor is to develop a versatile dataset capable of training models with robustness and adaptability to diverse document formats. Through empirical experimentation, we demonstrate that a deep layout identification model trained on our dataset exhibits enhanced performance compared to a model trained solely on actual documents. Moreover, we conduct a comparative analysis by fine-tuning inference models using both PubLayNet and IIIT-AR-13K datasets on the Doclaynet dataset. Our findings emphasize that models enriched with our dataset are optimal for tasks such as achieving 0.398 and 0.588 mAP95 score in the scientific document domain for the TABLE class.

Joint entity and relation extraction plays a pivotal role in various applications, notably in the construction of knowledge graphs. Despite recent progress, existing approaches often fall short in two key aspects: richness of representation and coherence in output structure. These models often rely on handcrafted heuristics for computing entity and relation representations, potentially leading to loss of crucial information. Furthermore, they disregard task and/or dataset-specific constraints, resulting in output structures that lack coherence. In our work, we introduce EnriCo, which mitigates these shortcomings. Firstly, to foster rich and expressive representation, our model leverage attention mechanisms that allow both entities and relations to dynamically determine the pertinent information required for accurate extraction. Secondly, we introduce a series of decoding algorithms designed to infer the highest scoring solutions while adhering to task and dataset-specific constraints, thus promoting structured and coherent outputs. Our model demonstrates competitive performance compared to baselines when evaluated on Joint IE datasets.

As the complexity of machine learning (ML) models increases and their application in different (and critical) domains grows, there is a strong demand for more interpretable and trustworthy ML. A direct, model-agnostic, way to interpret such models is to train surrogate models-such as rule sets and decision trees-that sufficiently approximate the original ones while being simpler and easier-to-explain. Yet, rule sets can become very lengthy, with many if-else statements, and decision tree depth grows rapidly when accurately emulating complex ML models. In such cases, both approaches can fail to meet their core goal-providing users with model interpretability. To tackle this, we propose DeforestVis, a visual analytics tool that offers summarization of the behaviour of complex ML models by providing surrogate decision stumps (one-level decision trees) generated with the Adaptive Boosting (AdaBoost) technique. DeforestVis helps users to explore the complexity versus fidelity trade-off by incrementally generating more stumps, creating attribute-based explanations with weighted stumps to justify decision making, and analysing the impact of rule overriding on training instance allocation between one or more stumps. An independent test set allows users to monitor the effectiveness of manual rule changes and form hypotheses based on case-by-case analyses. We show the applicability and usefulness of DeforestVis with two use cases and expert interviews with data analysts and model developers.

Tensor computations, with matrix multiplication being the primary operation, serve as the fundamental basis for data analysis, physics, machine learning, and deep learning. As the scale and complexity of data continue to grow rapidly, the demand for tensor computations has also increased significantly. To meet this demand, several research institutions have started developing dedicated hardware for tensor computations. To further improve the computational performance of tensor process units, we have reexamined the issue of computation reuse that was previously overlooked in existing architectures. As a result, we propose a novel EN-TensorCore architecture that can significantly reduce chip area and power consumption. Furthermore, our method is compatible with existing tensor processing architectures. We evaluated our method on prevalent microarchitectures, the results demonstrate an average improvement in area efficiency of 8.7\%, 12.2\%, and 11.0\% for tensor computing units at computational scales of 256 GOPS, 1 TOPS, and 4 TOPS, respectively. Similarly, there were energy efficiency enhancements of 13.0\%, 17.5\%, and 15.5\%.

This paper presents Pix2Seq, a simple and generic framework for object detection. Unlike existing approaches that explicitly integrate prior knowledge about the task, we simply cast object detection as a language modeling task conditioned on the observed pixel inputs. Object descriptions (e.g., bounding boxes and class labels) are expressed as sequences of discrete tokens, and we train a neural net to perceive the image and generate the desired sequence. Our approach is based mainly on the intuition that if a neural net knows about where and what the objects are, we just need to teach it how to read them out. Beyond the use of task-specific data augmentations, our approach makes minimal assumptions about the task, yet it achieves competitive results on the challenging COCO dataset, compared to highly specialized and well optimized detection algorithms.

This paper focuses on two fundamental tasks of graph analysis: community detection and node representation learning, which capture the global and local structures of graphs, respectively. In the current literature, these two tasks are usually independently studied while they are actually highly correlated. We propose a probabilistic generative model called vGraph to learn community membership and node representation collaboratively. Specifically, we assume that each node can be represented as a mixture of communities, and each community is defined as a multinomial distribution over nodes. Both the mixing coefficients and the community distribution are parameterized by the low-dimensional representations of the nodes and communities. We designed an effective variational inference algorithm which regularizes the community membership of neighboring nodes to be similar in the latent space. Experimental results on multiple real-world graphs show that vGraph is very effective in both community detection and node representation learning, outperforming many competitive baselines in both tasks. We show that the framework of vGraph is quite flexible and can be easily extended to detect hierarchical communities.

北京阿比特科技有限公司