The recent development of fact verification systems with natural logic has enhanced their explainability by aligning claims with evidence through set-theoretic operators, providing faithful justifications. Despite these advancements, such systems often rely on a large amount of training data annotated with natural logic. To address this issue, we propose a zero-shot method that utilizes the generalization capabilities of instruction-tuned large language models. To comprehensively assess the zero-shot capabilities of our method and other fact verification systems, we evaluate all models on both artificial and real-world claims, including multilingual datasets. We also compare our method against other fact verification systems in two setups. First, in the zero-shot generalization setup, we demonstrate that our approach outperforms other systems that were not specifically trained on natural logic data, achieving an average accuracy improvement of 8.96 points over the best-performing baseline. Second, in the zero-shot transfer setup, we show that current systems trained on natural logic data do not generalize well to other domains, and our method outperforms these systems across all datasets with real-world claims.
Rate splitting multiple access (RSMA) is regarded as a crucial and powerful physical layer (PHY) paradigm for next-generation communication systems. Particularly, users employ successive interference cancellation (SIC) to decode part of the interference while treating the remainder as noise. However, conventional RSMA systems rely on fixed-position antenna arrays, limiting their ability to fully exploit spatial diversity. This constraint reduces beamforming gain and significantly impairs RSMA performance. To address this problem, we propose a movable antenna (MA)-aided RSMA scheme that allows the antennas at the base station (BS) to dynamically adjust their positions. Our objective is to maximize the system sum rate of common and private messages by jointly optimizing the MA positions, beamforming matrix, and common rate allocation. To tackle the formulated non-convex problem, we apply fractional programming (FP) and develop an efficient two-stage, coarse-to-fine-grained searching (CFGS) algorithm to obtain high-quality solutions. Numerical results demonstrate that, with optimized antenna adjustments, the MA-enabled system achieves substantial performance and reliability improvements in RSMA over fixed-position antenna setups.
Learning-augmented algorithms have been extensively studied across the computer science community in the recent years, driven by advances in machine learning predictors, which can provide additional information to augment classical algorithms. Such predictions are especially powerful in the context of online problems, where decisions have to be made without knowledge of the future, and which traditionally exhibits impossibility results bounding the performance of any online algorithm. The study of learning-augmented algorithms thus aims to use external advice prudently, to overcome classical impossibility results when the advice is accurate, and still perform comparably to the state-of-the-art online algorithms even when the advice is inaccurate. In this paper, we present learning-augmented algorithmic frameworks for two fundamental optimizations settings, extending and generalizing prior works. For online packing with concave objectives, we present a simple but overarching strategy that switches between the advice and the state-of-the-art online algorithm. For online covering with convex objectives, we greatly extend primal-dual methods for online convex covering programs by Azar et al. (FOCS 2016) and previous learning-augmented framework for online covering linear programs from the literature, to many new applications. We show that our algorithms break impossibility results when the advice is accurate, while maintaining comparable performance with state-of-the-art classical online algorithms even when the advice is erroneous.
New and existing methods for generating, and especially detecting, deepfakes are investigated and compared on the simple problem of authenticating coin flip data. Importantly, an alternative approach to deepfake generation and detection, which uses a Markov Observation Model (MOM) is introduced and compared on detection ability to the traditional Generative Adversarial Network (GAN) approach as well as Support Vector Machine (SVM), Branching Particle Filtering (BPF) and human alternatives. MOM was also compared on generative and discrimination ability to GAN, filtering and humans (as SVM does not have generative ability). Humans are shown to perform the worst, followed in order by GAN, SVM, BPF and MOM, which was the best at the detection of deepfakes. Unsurprisingly, the order was maintained on the generation problem with removal of SVM as it does not have generation ability.
Existing works based on molecular knowledge neglect the 3D geometric structure of molecules and fail to learn the high-dimensional information of medications, leading to structural confusion. Additionally, it does not extract key substructures from a single patient visit, resulting in the failure to identify medication molecules suitable for the current patient visit. To address the above limitations, we propose a bimodal molecular recommendation framework named BiMoRec, which introduces 3D molecular structures to obtain atomic 3D coordinates and edge indices, overcoming the inherent lack of high-dimensional molecular information in 2D molecular structures. To retain the fast training and prediction efficiency of the recommendation system, we use bimodal graph contrastive pretraining to maximize the mutual information between the two molecular modalities, achieving the fusion of 2D and 3D molecular graphs. Additionally, we designed a molecular multi-step enhancement mechanism to re-calibrate the molecular weights. Specifically, we employ a pre-training method that captures both 2D and 3D molecular structure representations, along with substructure representations, and leverages contrastive learning to extract mutual information. We then use the pre-trained encoder to generate molecular representations, enhancing them through a three-step process: intra-visit, molecular per-visit, and latest-visit. Finally, we apply temporal information aggregation to generate the final medication combinations. Our implementation on the MIMIC-III and MIMIC-IV datasets demonstrates that our method achieves state-of-the-art performance.
The generation of synthetic data is a state-of-the-art approach to leverage when access to real data is limited or privacy regulations limit the usability of sensitive data. A fair amount of research has been conducted on synthetic data generation for single-tabular datasets, but only a limited amount of research has been conducted on multi-tabular datasets with complex table relationships. In this paper we propose the algorithm HCTGAN to synthesize multi-tabular data from complex multi-tabular datasets. We compare our results to the probabilistic model HMA1. Our findings show that our proposed algorithm can more efficiently sample large amounts of synthetic data for deep and complex multi-tabular datasets, whilst achieving adequate data quality and always guaranteeing referential integrity. We conclude that the HCTGAN algorithm is suitable for generating large amounts of synthetic data efficiently for deep multi-tabular datasets with complex relationships. We additionally suggest that the HMA1 model should be used on smaller datasets when emphasis is on data quality.
By leveraging the principles of quantum mechanics, QML opens doors to novel approaches in machine learning and offers potential speedup. However, machine learning models are well-documented to be vulnerable to malicious manipulations, and this susceptibility extends to the models of QML. This situation necessitates a thorough understanding of QML's resilience against adversarial attacks, particularly in an era where quantum computing capabilities are expanding. In this regard, this paper examines model-independent bounds on adversarial performance for QML. To the best of our knowledge, we introduce the first computation of an approximate lower bound for adversarial error when evaluating model resilience against sophisticated quantum-based adversarial attacks. Experimental results are compared to the computed bound, demonstrating the potential of QML models to achieve high robustness. In the best case, the experimental error is only 10% above the estimated bound, offering evidence of the inherent robustness of quantum models. This work not only advances our theoretical understanding of quantum model resilience but also provides a precise reference bound for the future development of robust QML algorithms.
By leveraging the representation power of deep neural networks, neural upper confidence bound (UCB) algorithms have shown success in contextual bandits. To further balance the exploration and exploitation, we propose Neural-$\sigma^2$-LinearUCB, a variance-aware algorithm that utilizes $\sigma^2_t$, i.e., an upper bound of the reward noise variance at round $t$, to enhance the uncertainty quantification quality of the UCB, resulting in a regret performance improvement. We provide an oracle version for our algorithm characterized by an oracle variance upper bound $\sigma^2_t$ and a practical version with a novel estimation for this variance bound. Theoretically, we provide rigorous regret analysis for both versions and prove that our oracle algorithm achieves a better regret guarantee than other neural-UCB algorithms in the neural contextual bandits setting. Empirically, our practical method enjoys a similar computational efficiency, while outperforming state-of-the-art techniques by having a better calibration and lower regret across multiple standard settings, including on the synthetic, UCI, MNIST, and CIFAR-10 datasets.
This research presents FDASynthesis, a novel algorithm designed to generate synthetic GPS trajectory data while preserving privacy. After pre-processing the input GPS data, human mobility traces are modeled as multidimensional curves using Functional Data Analysis (FDA). Then, the synthesis process identifies the K-nearest trajectories and averages their Square-Root Velocity Functions (SRVFs) to generate synthetic data. This results in synthetic trajectories that maintain the utility of the original data while ensuring privacy. Although applied for human mobility research, FDASynthesis is highly adaptable to different types of functional data, offering a scalable solution in various application domains.
Cold-start problems are long-standing challenges for practical recommendations. Most existing recommendation algorithms rely on extensive observed data and are brittle to recommendation scenarios with few interactions. This paper addresses such problems using few-shot learning and meta learning. Our approach is based on the insight that having a good generalization from a few examples relies on both a generic model initialization and an effective strategy for adapting this model to newly arising tasks. To accomplish this, we combine the scenario-specific learning with a model-agnostic sequential meta-learning and unify them into an integrated end-to-end framework, namely Scenario-specific Sequential Meta learner (or s^2 meta). By doing so, our meta-learner produces a generic initial model through aggregating contextual information from a variety of prediction tasks while effectively adapting to specific tasks by leveraging learning-to-learn knowledge. Extensive experiments on various real-world datasets demonstrate that our proposed model can achieve significant gains over the state-of-the-arts for cold-start problems in online recommendation. Deployment is at the Guess You Like session, the front page of the Mobile Taobao.
Benefit from the quick development of deep learning techniques, salient object detection has achieved remarkable progresses recently. However, there still exists following two major challenges that hinder its application in embedded devices, low resolution output and heavy model weight. To this end, this paper presents an accurate yet compact deep network for efficient salient object detection. More specifically, given a coarse saliency prediction in the deepest layer, we first employ residual learning to learn side-output residual features for saliency refinement, which can be achieved with very limited convolutional parameters while keep accuracy. Secondly, we further propose reverse attention to guide such side-output residual learning in a top-down manner. By erasing the current predicted salient regions from side-output features, the network can eventually explore the missing object parts and details which results in high resolution and accuracy. Experiments on six benchmark datasets demonstrate that the proposed approach compares favorably against state-of-the-art methods, and with advantages in terms of simplicity, efficiency (45 FPS) and model size (81 MB).