We propose a least-squares formulation for parabolic equations in the natural $L^2(0,T;V^*)\times H$ norm which avoids regularity assumptions on the data of the problem. For the abstract heat equation the resulting bilinear form then is symmetric, continuous, and coercive. This among other things paves the ground for classical space-time a priori and a posteriori Galerkin frameworks for the numerical approximation of the solution of the abstract heat equation. Moreover, the approach is applicable in e.g. optimal control problems with (parametrized) parabolic equations, and for certification of reduced basis methods with parabolic equations.
The Plackett--Luce model is a popular approach for ranking data analysis, where a utility vector is employed to determine the probability of each outcome based on Luce's choice axiom. In this paper, we investigate the asymptotic theory of utility vector estimation by maximizing different types of likelihood, such as the full-, marginal-, and quasi-likelihood. We provide a rank-matching interpretation for the estimating equations of these estimators and analyze their asymptotic behavior as the number of items being compared tends to infinity. In particular, we establish the uniform consistency of these estimators under conditions characterized by the topology of the underlying comparison graph sequence and demonstrate that the proposed conditions are sharp for common sampling scenarios such as the nonuniform random hypergraph model and the hypergraph stochastic block model; we also obtain the asymptotic normality of these estimators and discuss the trade-off between statistical efficiency and computational complexity for practical uncertainty quantification. Both results allow for nonuniform and inhomogeneous comparison graphs with varying edge sizes and different asymptotic orders of edge probabilities. We verify our theoretical findings by conducting detailed numerical experiments.
In this paper, we are concerned with efficiently solving the sequences of regularized linear least squares problems associated with employing Tikhonov-type regularization with regularization operators designed to enforce edge recovery. An optimal regularization parameter, which balances the fidelity to the data with the edge-enforcing constraint term, is typically not known a priori. This adds to the total number of regularized linear least squares problems that must be solved before the final image can be recovered. Therefore, in this paper, we determine effective multigrid preconditioners for these sequences of systems. We focus our approach on the sequences that arise as a result of the edge-preserving method introduced in [6], where we can exploit an interpretation of the regularization term as a diffusion operator; however, our methods are also applicable in other edge-preserving settings, such as iteratively reweighted least squares problems. Particular attention is paid to the selection of components of the multigrid preconditioner in order to achieve robustness for different ranges of the regularization parameter value. In addition, we present a parameter culling approach that, when used with the L-curve heuristic, reduces the total number of solves required. We demonstrate our preconditioning and parameter culling routines on examples in computed tomography and image deblurring.
We present a space-time ultra-weak discontinuous Galerkin discretization of the linear Schr\"odinger equation with variable potential. The proposed method is well-posed and quasi-optimal in mesh-dependent norms for very general discrete spaces. Optimal $h$-convergence error estimates are derived for the method when test and trial spaces are chosen either as piecewise polynomials, or as a novel quasi-Trefftz polynomial space. The latter allows for a substantial reduction of the number of degrees of freedom and admits piecewise-smooth potentials. Several numerical experiments validate the accuracy and advantages of the proposed method.
In general, high order splitting methods suffer from an order reduction phenomena when applied to the time integration of partial differential equations with non-periodic boundary conditions. In the last decade, there were introduced several modifications to prevent the second order Strang Splitting method from such a phenomena. In this article, inspired by these recent corrector techniques, we introduce a splitting method of order three for a class of semilinear parabolic problems that avoids order reduction in the context of non-periodic boundary conditions. We give a proof for the third order convergence of the method in a simplified linear setting and confirm the result by numerical experiments. Moreover, we show numerically that the result also persists with a nonlinear source term.
We present a new mimetic finite difference method for diffusion problems that converges on grids with \textit{curved} (i.e., non-planar) faces. Crucially, it gives a symmetric discrete problem that uses only one discrete unknown per curved face. The principle at the core of our construction is to abandon the standard definition of local consistency of mimetic finite difference methods. Instead, we exploit the novel and global concept of $P_{0}$-consistency. Numerical examples confirm the consistency and the optimal convergence rate of the proposed mimetic method for cubic grids with randomly perturbed nodes as well as grids with curved boundaries.
This paper explores variants of the subspace iteration algorithm for computing approximate invariant subspaces. The standard subspace iteration approach is revisited and new variants that exploit gradient-type techniques combined with a Grassmann manifold viewpoint are developed. A gradient method as well as a conjugate gradient technique are described. Convergence of the gradient-based algorithm is analyzed and a few numerical experiments are reported, indicating that the proposed algorithms are sometimes superior to a standard Chebyshev-based subspace iteration when compared in terms of number of matrix vector products, but do not require estimating optimal parameters. An important contribution of this paper to achieve this good performance is the accurate and efficient implementation of an exact line search. In addition, new convergence proofs are presented for the non-accelerated gradient method that includes a locally exponential convergence if started in a $\mathcal{O(\sqrt{\delta})}$ neighbourhood of the dominant subspace with spectral gap $\delta$.
Learning a nonparametric system of ordinary differential equations (ODEs) from $n$ trajectory snapshots in a $d$-dimensional state space requires learning $d$ functions of $d$ variables. Explicit formulations scale quadratically in $d$ unless additional knowledge about system properties, such as sparsity and symmetries, is available. In this work, we propose a linear approach to learning using the implicit formulation provided by vector-valued Reproducing Kernel Hilbert Spaces. By rewriting the ODEs in a weaker integral form, which we subsequently minimize, we derive our learning algorithm. The minimization problem's solution for the vector field relies on multivariate occupation kernel functions associated with the solution trajectories. We validate our approach through experiments on highly nonlinear simulated and real data, where $d$ may exceed 100. We further demonstrate the versatility of the proposed method by learning a nonparametric first order quasilinear partial differential equation.
In this article, we present the time-space Chebyshev pseudospectral method (TS-CPsM) to approximate a solution to the generalised Burgers-Fisher (gBF) equation. The Chebyshev-Gauss-Lobatto (CGL) points serve as the foundation for the recommended method, which makes use of collocations in both the time and space directions. Further, using a mapping, the non-homogeneous initial-boundary value problem is transformed into a homogeneous problem, and a system of algebraic equations is obtained. The numerical approach known as Newton-Raphson is implemented in order to get the desired results for the system. The proposed method's stability analysis has been performed. Different researchers' considerations on test problems have been explored to illustrate the robustness and practicality of the approach presented. The approximate solutions we found using the proposed method are highly accurate and significantly better than the existing results.
In this study, we examine numerical approximations for 2nd-order linear-nonlinear differential equations with diverse boundary conditions, followed by the residual corrections of the first approximations. We first obtain numerical results using the Galerkin weighted residual approach with Bernstein polynomials. The generation of residuals is brought on by the fact that our first approximation is computed using numerical methods. To minimize these residuals, we use the compact finite difference scheme of 4th-order convergence to solve the error differential equations in accordance with the error boundary conditions. We also introduce the formulation of the compact finite difference method of fourth-order convergence for the nonlinear BVPs. The improved approximations are produced by adding the error values derived from the approximations of the error differential equation to the weighted residual values. Numerical results are compared to the exact solutions and to the solutions available in the published literature to validate the proposed scheme, and high accuracy is achieved in all cases
Multivariate sequential data collected in practice often exhibit temporal irregularities, including nonuniform time intervals and component misalignment. However, if uneven spacing and asynchrony are endogenous characteristics of the data rather than a result of insufficient observation, the information content of these irregularities plays a defining role in characterizing the multivariate dependence structure. Existing approaches for probabilistic forecasting either overlook the resulting statistical heterogeneities, are susceptible to imputation biases, or impose parametric assumptions on the data distribution. This paper proposes an end-to-end solution that overcomes these limitations by allowing the observation arrival times to play the central role of model construction, which is at the core of temporal irregularities. To acknowledge temporal irregularities, we first enable unique hidden states for components so that the arrival times can dictate when, how, and which hidden states to update. We then develop a conditional flow representation to non-parametrically represent the data distribution, which is typically non-Gaussian, and supervise this representation by carefully factorizing the log-likelihood objective to select conditional information that facilitates capturing time variation and path dependency. The broad applicability and superiority of the proposed solution are confirmed by comparing it with existing approaches through ablation studies and testing on real-world datasets.