亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A novel algorithm for the computation of the quadratic numerical range is presented and exemplified yielding much better results in less time compared to the random vector sampling method. Furthermore, a bound on the probability for the random vector sampling method to produce a point exceeding a neighborhood of the expectation value in dependence on norm and size of the matrix is given.

相關內容

In this paper we present a layered approach for multi-agent control problem, decomposed into three stages, each building upon the results of the previous one. First, a high-level plan for a coarse abstraction of the system is computed, relying on parametric timed automata augmented with stopwatches as they allow to efficiently model simplified dynamics of such systems. In the second stage, the high-level plan, based on SMT-formulation, mainly handles the combinatorial aspects of the problem, provides a more dynamically accurate solution. These stages are collectively referred to as the SWA-SMT solver. They are correct by construction but lack a crucial feature: they cannot be executed in real time. To overcome this, we use SWA-SMT solutions as the initial training dataset for our last stage, which aims at obtaining a neural network control policy. We use reinforcement learning to train the policy, and show that the initial dataset is crucial for the overall success of the method.

We revisit the method of mixture technique, also known as the Laplace method, to study the concentration phenomenon in generic exponential families. Combining the properties of Bregman divergence associated with log-partition function of the family with the method of mixtures for super-martingales, we establish a generic bound controlling the Bregman divergence between the parameter of the family and a finite sample estimate of the parameter. Our bound is time-uniform and makes appear a quantity extending the classical information gain to exponential families, which we call the Bregman information gain. For the practitioner, we instantiate this novel bound to several classical families, e.g., Gaussian, Bernoulli, Exponential, Weibull, Pareto, Poisson and Chi-square yielding explicit forms of the confidence sets and the Bregman information gain. We further numerically compare the resulting confidence bounds to state-of-the-art alternatives for time-uniform concentration and show that this novel method yields competitive results. Finally, we highlight the benefit of our concentration bounds on some illustrative applications.

The number of modes in a probability density function is representative of the model's complexity and can also be viewed as the number of existing subpopulations. Despite its relevance, little research has been devoted to its estimation. Focusing on the univariate setting, we propose a novel approach targeting prediction accuracy inspired by some overlooked aspects of the problem. We argue for the need for structure in the solutions, the subjective and uncertain nature of modes, and the convenience of a holistic view blending global and local density properties. Our method builds upon a combination of flexible kernel estimators and parsimonious compositional splines. Feature exploration, model selection and mode testing are implemented in the Bayesian inference paradigm, providing soft solutions and allowing to incorporate expert judgement in the process. The usefulness of our proposal is illustrated through a case study in sports analytics, showcasing multiple companion visualisation tools. A thorough simulation study demonstrates that traditional modality-driven approaches paradoxically struggle to provide accurate results. In this context, our method emerges as a top-tier alternative offering innovative solutions for analysts.

Vector autoregressions (VARs) have an associated order $p$; conditional on observations at the preceding $p$ time points, the variable at time $t$ is conditionally independent of all the earlier history. Learning the order of the model is therefore vital for its characterisation and subsequent use in forecasting. It is common to assume that a VAR is stationary. This prevents the predictive variance of the process from increasing without bound as the forecast horizon increases and facilitates interpretation of the relationships between variables. A VAR is stable if and only if the roots of its characteristic equation lie outside the unit circle, constraining the autoregressive coefficient matrices to lie in the stationary region. Unfortunately, the geometry of the stationary region is very complicated which impedes specification of a prior. In this work, the autoregressive coefficients are mapped to a set of transformed partial autocorrelation matrices which are unconstrained, allowing for straightforward prior specification, routine computational inference, and meaningful interpretation of the magnitude of the elements in the matrix. The multiplicative gamma process is used to build a prior for the unconstrained matrices, which encourages increasing shrinkage of the partial autocorrelation parameters as the lag increases. Identifying the lag beyond which the partial autocorrelations become equal to zero then determines the order of the process. Posterior inference is performed using Hamiltonian Monte Carlo via Stan. A truncation criterion is used to determine whether a partial autocorrelation matrix has been effectively shrunk to zero. The value of the truncation threshold is motivated by classical theory on the sampling distribution of the partial autocorrelation function. The work is applied to neural activity data in order to investigate ultradian rhythms in the brain.

We seek the best traffic allocation scheme for the edge-cloud computing network that satisfies constraints and minimizes the cost based on burstable billing. First, for a fixed network topology, we formulate a family of integer programming problems with random parameters describing the various traffic demands. Then, to overcome the difficulty caused by the discrete feature of the problem, we generalize the Gumbel-softmax reparameterization method to induce an unconstrained continuous optimization problem as a regularized continuation of the discrete problem. Finally, we introduce the Gumbel-softmax sampling network to solve the optimization problems via unsupervised learning. The network structure reflects the edge-cloud computing topology and is trained to minimize the expectation of the cost function for unconstrained continuous optimization problems. The trained network works as an efficient traffic allocation scheme sampler, remarkably outperforming the random strategy in feasibility and cost function value. Besides testing the quality of the output allocation scheme, we examine the generalization property of the network by increasing the time steps and the number of users. We also feed the solution to existing integer optimization solvers as initial conditions and verify the warm-starts can accelerate the short-time iteration process. The framework is general with solid performance, and the decoupled feature of the random neural networks is adequate for practical implementations.

A finite element discretization is developed for the Cai-Hu model, describing the formation of biological networks. The model consists of a non linear elliptic equation for the pressure $p$ and a non linear reaction-diffusion equation for the conductivity tensor $\mathbb{C}$. The problem requires high resolution due to the presence of multiple scales, the stiffness in all its components and the non linearities. We propose a low order finite element discretization in space coupled with a semi-implicit time advancing scheme. The code is {verified} with several numerical tests performed with various choices for the parameters involved in the system. In absence of the exact solution, we apply Richardson extrapolation technique to estimate the order of the method.

The logic of goal-directed knowing-how extends the standard epistemic logic with an operator of knowing-how. The knowing-how operator is interpreted as that there exists a strategy such that the agent knows that the strategy can make sure that p. This paper presents a tableau procedure for the multi-agent version of the logic of strategically knowing-how and shows the soundness and completeness of this tableau procedure. This paper also shows that the satisfiability problem of the logic can be decided in PSPACE.

The strong convergence of numerical methods for stochastic differential equations (SDEs) for $t\in[0,\infty)$ is proved. The result is applicable to any one-step numerical methods with Markov property that have the finite time strong convergence and the uniformly bounded moment. In addition, the convergence of the numerical stationary distribution to the underlying one can be derived from this result. To demonstrate the application of this result, the strong convergence in the infinite horizon of the backward Euler-Maruyama method in the $L^p$ sense for some small $p\in (0,1)$ is proved for SDEs with super-linear coefficients, which is also a a standalone new result. Numerical simulations are provided to illustrate the theoretical results.

We provide a rigorous analysis of training by variational inference (VI) of Bayesian neural networks in the two-layer and infinite-width case. We consider a regression problem with a regularized evidence lower bound (ELBO) which is decomposed into the expected log-likelihood of the data and the Kullback-Leibler (KL) divergence between the a priori distribution and the variational posterior. With an appropriate weighting of the KL, we prove a law of large numbers for three different training schemes: (i) the idealized case with exact estimation of a multiple Gaussian integral from the reparametrization trick, (ii) a minibatch scheme using Monte Carlo sampling, commonly known as Bayes by Backprop, and (iii) a new and computationally cheaper algorithm which we introduce as Minimal VI. An important result is that all methods converge to the same mean-field limit. Finally, we illustrate our results numerically and discuss the need for the derivation of a central limit theorem.

We consider the classic 1-center problem: Given a set $P$ of $n$ points in a metric space find the point in $P$ that minimizes the maximum distance to the other points of $P$. We study the complexity of this problem in $d$-dimensional $\ell_p$-metrics and in edit and Ulam metrics over strings of length $d$. Our results for the 1-center problem may be classified based on $d$ as follows. $\bullet$ Small $d$: Assuming the hitting set conjecture (HSC), we show that when $d=\omega(\log n)$, no subquadratic algorithm can solve 1-center problem in any of the $\ell_p$-metrics, or in edit or Ulam metrics. $\bullet$ Large $d$: When $d=\Omega(n)$, we extend our conditional lower bound to rule out subquartic algorithms for 1-center problem in edit metric (assuming Quantified SETH). On the other hand, we give a $(1+\epsilon)$-approximation for 1-center in Ulam metric with running time $\tilde{O_{\varepsilon}}(nd+n^2\sqrt{d})$. We also strengthen some of the above lower bounds by allowing approximations or by reducing the dimension $d$, but only against a weaker class of algorithms which list all requisite solutions. Moreover, we extend one of our hardness results to rule out subquartic algorithms for the well-studied 1-median problem in the edit metric, where given a set of $n$ strings each of length $n$, the goal is to find a string in the set that minimizes the sum of the edit distances to the rest of the strings in the set.

北京阿比特科技有限公司