Audio and video are two most common modalities in the mainstream media platforms, e.g., YouTube. To learn from multimodal videos effectively, in this work, we propose a novel audio-video recognition approach termed audio video Transformer, AVT, leveraging the effective spatio-temporal representation by the video Transformer to improve action recognition accuracy. For multimodal fusion, simply concatenating multimodal tokens in a cross-modal Transformer requires large computational and memory resources, instead we reduce the cross-modality complexity through an audio-video bottleneck Transformer. To improve the learning efficiency of multimodal Transformer, we integrate self-supervised objectives, i.e., audio-video contrastive learning, audio-video matching, and masked audio and video learning, into AVT training, which maps diverse audio and video representations into a common multimodal representation space. We further propose a masked audio segment loss to learn semantic audio activities in AVT. Extensive experiments and ablation studies on three public datasets and two in-house datasets consistently demonstrate the effectiveness of the proposed AVT. Specifically, AVT outperforms its previous state-of-the-art counterparts on Kinetics-Sounds by 8%. AVT also surpasses one of the previous state-of-the-art video Transformers [25] by 10% on VGGSound by leveraging the audio signal. Compared to one of the previous state-of-the-art multimodal methods, MBT [32], AVT is 1.3% more efficient in terms of FLOPs and improves the accuracy by 3.8% on Epic-Kitchens-100.
Live streaming recommender system is specifically designed to recommend real-time live streaming of interest to users. Due to the dynamic changes of live content, improving the timeliness of the live streaming recommender system is a critical problem. Intuitively, the timeliness of the data determines the upper bound of the timeliness that models can learn. However, none of the previous works addresses the timeliness problem of the live streaming recommender system from the perspective of data stream design. Employing the conventional fixed window data stream paradigm introduces a trade-off dilemma between labeling accuracy and timeliness. In this paper, we propose a new data stream design paradigm, dubbed Sliver, that addresses the timeliness and accuracy problem of labels by reducing the window size and implementing a sliding window correspondingly. Meanwhile, we propose a time-sensitive re-reco strategy reducing the latency between request and impression to improve the timeliness of the recommendation service and features by periodically requesting the recommendation service. To demonstrate the effectiveness of our approach, we conduct offline experiments on a multi-task live streaming dataset with labeling timestamps collected from the Kuaishou live streaming platform. Experimental results demonstrate that Sliver outperforms two fixed-window data streams with varying window sizes across all targets in four typical multi-task recommendation models. Furthermore, we deployed Sliver on the Kuaishou live streaming platform. Results of the online A/B test show a significant improvement in click-through rate (CTR), and new follow number (NFN), further validating the effectiveness of Sliver.
Generating high-quality videos that synthesize desired realistic content is a challenging task due to their intricate high-dimensionality and complexity of videos. Several recent diffusion-based methods have shown comparable performance by compressing videos to a lower-dimensional latent space, using traditional video autoencoder architecture. However, such method that employ standard frame-wise 2D and 3D convolution fail to fully exploit the spatio-temporal nature of videos. To address this issue, we propose a novel hybrid video diffusion model, called HVDM, which can capture spatio-temporal dependencies more effectively. The HVDM is trained by a hybrid video autoencoder which extracts a disentangled representation of the video including: (i) a global context information captured by a 2D projected latent (ii) a local volume information captured by 3D convolutions with wavelet decomposition (iii) a frequency information for improving the video reconstruction. Based on this disentangled representation, our hybrid autoencoder provide a more comprehensive video latent enriching the generated videos with fine structures and details. Experiments on video generation benchamarks (UCF101, SkyTimelapse, and TaiChi) demonstrate that the proposed approach achieves state-of-the-art video generation quality, showing a wide range of video applications (e.g., long video generation, image-to-video, and video dynamics control).
Packet loss during video conferencing often leads to poor quality and video freezing. Attempting to retransmit lost packets is often impractical due to the need for real-time playback. Employing Forward Error Correction (FEC) for recovering the lost packets is challenging as it is difficult to determine the appropriate redundancy level. To address these issues, we introduce Reparo -- a loss-resilient video conferencing framework based on generative deep learning models. Our approach involves generating missing information when a frame or part of a frame is lost. This generation is conditioned on the data received thus far, taking into account the model's understanding of how people and objects appear and interact within the visual realm. Experimental results, using publicly available video conferencing datasets, demonstrate that Reparo outperforms state-of-the-art FEC-based video conferencing solutions in terms of both video quality (measured through PSNR, SSIM, and LPIPS) and the occurrence of video freezes.
Generating 3D scenes is a challenging open problem, which requires synthesizing plausible content that is fully consistent in 3D space. While recent methods such as neural radiance fields excel at view synthesis and 3D reconstruction, they cannot synthesize plausible details in unobserved regions since they lack a generative capability. Conversely, existing generative methods are typically not capable of reconstructing detailed, large-scale scenes in the wild, as they use limited-capacity 3D scene representations, require aligned camera poses, or rely on additional regularizers. In this work, we introduce the first diffusion model able to perform fast, detailed reconstruction and generation of real-world 3D scenes. To achieve this, we make three contributions. First, we introduce a new neural scene representation, IB-planes, that can efficiently and accurately represent large 3D scenes, dynamically allocating more capacity as needed to capture details visible in each image. Second, we propose a denoising-diffusion framework to learn a prior over this novel 3D scene representation, using only 2D images without the need for any additional supervision signal such as masks or depths. This supports 3D reconstruction and generation in a unified architecture. Third, we develop a principled approach to avoid trivial 3D solutions when integrating the image-based rendering with the diffusion model, by dropping out representations of some images. We evaluate the model on several challenging datasets of real and synthetic images, and demonstrate superior results on generation, novel view synthesis and 3D reconstruction.
Short-form UGC video platforms, like Kwai and TikTok, have been an emerging and irreplaceable mainstream media form, thriving on user-friendly engagement, and kaleidoscope creation, etc. However, the advancing content-generation modes, e.g., special effects, and sophisticated processing workflows, e.g., de-artifacts, have introduced significant challenges to recent UGC video quality assessment: (i) the ambiguous contents hinder the identification of quality-determined regions. (ii) the diverse and complicated hybrid distortions are hard to distinguish. To tackle the above challenges and assist in the development of short-form videos, we establish the first large-scale Kaleidoscope short Video database for Quality assessment, termed KVQ, which comprises 600 user-uploaded short videos and 3600 processed videos through the diverse practical processing workflows, including pre-processing, transcoding, and enhancement. Among them, the absolute quality score of each video and partial ranking score among indistinguishable samples are provided by a team of professional researchers specializing in image processing. Based on this database, we propose the first short-form video quality evaluator, i.e., KSVQE, which enables the quality evaluator to identify the quality-determined semantics with the content understanding of large vision language models (i.e., CLIP) and distinguish the distortions with the distortion understanding module. Experimental results have shown the effectiveness of KSVQE on our KVQ database and popular VQA databases.
Social media platforms (SMPs) leverage algorithmic filtering (AF) as a means of selecting the content that constitutes a user's feed with the aim of maximizing their rewards. Selectively choosing the contents to be shown on the user's feed may yield a certain extent of influence, either minor or major, on the user's decision-making, compared to what it would have been under a natural/fair content selection. As we have witnessed over the past decade, algorithmic filtering can cause detrimental side effects, ranging from biasing individual decisions to shaping those of society as a whole, for example, diverting users' attention from whether to get the COVID-19 vaccine or inducing the public to choose a presidential candidate. The government's constant attempts to regulate the adverse effects of AF are often complicated, due to bureaucracy, legal affairs, and financial considerations. On the other hand SMPs seek to monitor their own algorithmic activities to avoid being fined for exceeding the allowable threshold. In this paper, we mathematically formalize this framework and utilize it to construct a data-driven statistical auditing procedure to regulate AF from deflecting users' beliefs over time, along with sample complexity guarantees. This state-of-the-art algorithm can be used either by authorities acting as external regulators or by SMPs for self-auditing.
Vast amount of data generated from networks of sensors, wearables, and the Internet of Things (IoT) devices underscores the need for advanced modeling techniques that leverage the spatio-temporal structure of decentralized data due to the need for edge computation and licensing (data access) issues. While federated learning (FL) has emerged as a framework for model training without requiring direct data sharing and exchange, effectively modeling the complex spatio-temporal dependencies to improve forecasting capabilities still remains an open problem. On the other hand, state-of-the-art spatio-temporal forecasting models assume unfettered access to the data, neglecting constraints on data sharing. To bridge this gap, we propose a federated spatio-temporal model -- Cross-Node Federated Graph Neural Network (CNFGNN) -- which explicitly encodes the underlying graph structure using graph neural network (GNN)-based architecture under the constraint of cross-node federated learning, which requires that data in a network of nodes is generated locally on each node and remains decentralized. CNFGNN operates by disentangling the temporal dynamics modeling on devices and spatial dynamics on the server, utilizing alternating optimization to reduce the communication cost, facilitating computations on the edge devices. Experiments on the traffic flow forecasting task show that CNFGNN achieves the best forecasting performance in both transductive and inductive learning settings with no extra computation cost on edge devices, while incurring modest communication cost.
Convolutional neural networks (CNNs) have shown dramatic improvements in single image super-resolution (SISR) by using large-scale external samples. Despite their remarkable performance based on the external dataset, they cannot exploit internal information within a specific image. Another problem is that they are applicable only to the specific condition of data that they are supervised. For instance, the low-resolution (LR) image should be a "bicubic" downsampled noise-free image from a high-resolution (HR) one. To address both issues, zero-shot super-resolution (ZSSR) has been proposed for flexible internal learning. However, they require thousands of gradient updates, i.e., long inference time. In this paper, we present Meta-Transfer Learning for Zero-Shot Super-Resolution (MZSR), which leverages ZSSR. Precisely, it is based on finding a generic initial parameter that is suitable for internal learning. Thus, we can exploit both external and internal information, where one single gradient update can yield quite considerable results. (See Figure 1). With our method, the network can quickly adapt to a given image condition. In this respect, our method can be applied to a large spectrum of image conditions within a fast adaptation process.
We present a new method to learn video representations from large-scale unlabeled video data. Ideally, this representation will be generic and transferable, directly usable for new tasks such as action recognition and zero or few-shot learning. We formulate unsupervised representation learning as a multi-modal, multi-task learning problem, where the representations are shared across different modalities via distillation. Further, we introduce the concept of loss function evolution by using an evolutionary search algorithm to automatically find optimal combination of loss functions capturing many (self-supervised) tasks and modalities. Thirdly, we propose an unsupervised representation evaluation metric using distribution matching to a large unlabeled dataset as a prior constraint, based on Zipf's law. This unsupervised constraint, which is not guided by any labeling, produces similar results to weakly-supervised, task-specific ones. The proposed unsupervised representation learning results in a single RGB network and outperforms previous methods. Notably, it is also more effective than several label-based methods (e.g., ImageNet), with the exception of large, fully labeled video datasets.
Image-to-image translation aims to learn the mapping between two visual domains. There are two main challenges for many applications: 1) the lack of aligned training pairs and 2) multiple possible outputs from a single input image. In this work, we present an approach based on disentangled representation for producing diverse outputs without paired training images. To achieve diversity, we propose to embed images onto two spaces: a domain-invariant content space capturing shared information across domains and a domain-specific attribute space. Our model takes the encoded content features extracted from a given input and the attribute vectors sampled from the attribute space to produce diverse outputs at test time. To handle unpaired training data, we introduce a novel cross-cycle consistency loss based on disentangled representations. Qualitative results show that our model can generate diverse and realistic images on a wide range of tasks without paired training data. For quantitative comparisons, we measure realism with user study and diversity with a perceptual distance metric. We apply the proposed model to domain adaptation and show competitive performance when compared to the state-of-the-art on the MNIST-M and the LineMod datasets.