亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Combining observational and experimental data for causal inference can improve treatment effect estimation. However, many observational data sets cannot be released due to data privacy considerations, so one researcher may not have access to both experimental and observational data. Nonetheless, a small amount of risk of disclosing sensitive information might be tolerable to organizations that house confidential data. In these cases, organizations can employ data privacy techniques, which decrease disclosure risk, potentially at the expense of data utility. In this paper, we explore disclosure limiting transformations of observational data, which can be combined with experimental data to estimate the sample and population average treatment effects. We consider leveraging observational data to improve generalizability of treatment effect estimates when a randomized experiment (RCT) is not representative of the population of interest, and to increase precision of treatment effect estimates. Through simulation studies, we illustrate the trade-off between privacy and utility when employing different disclosure limiting transformations. We find that leveraging transformed observational data in treatment effect estimation can still improve estimation over only using data from an RCT.

相關內容

Citation metrics are the best tools for research assessments. However, current metrics may be misleading in research systems that pursue simultaneously different goals, such as the advance of science and incremental innovations, because their publications have different citation distributions. We estimate the contribution to the progress of knowledge by studying only a limited number of the most cited papers, which are dominated by publications pursuing this progress. To field-normalize the metrics, we substitute the number of citations by the rank position of papers from one country in the global list of papers. Using synthetic series of lognormally distributed numbers, we developed the Rk-index, which is calculated from the global ranks of the 10 highest numbers in each series, and demonstrate its equivalence to the number of papers in top percentiles, P_top0.1% and P_top0.01% . In real cases, the Rk-index is simple and easy to calculate, and evaluates the contribution to the progress of knowledge better than less stringent metrics. Although further research is needed, rank analysis of the most cited papers is a promising approach for research evaluation. It is also demonstrated that, for this purpose, domestic and collaborative papers should be studied independently.

An accurate estimation of the state of health (SOH) of batteries is critical to ensuring the safe and reliable operation of electric vehicles (EVs). Feature-based machine learning methods have exhibited enormous potential for rapidly and precisely monitoring battery health status. However, simultaneously using various health indicators (HIs) may weaken estimation performance due to feature redundancy. Furthermore, ignoring real-world driving behaviors can lead to inaccurate estimation results as some features are rarely accessible in practical scenarios. To address these issues, we proposed a feature-based machine learning pipeline for reliable battery health monitoring, enabled by evaluating the acquisition probability of features under real-world driving conditions. We first summarized and analyzed various individual HIs with mechanism-related interpretations, which provide insightful guidance on how these features relate to battery degradation modes. Moreover, all features were carefully evaluated and screened based on estimation accuracy and correlation analysis on three public battery degradation datasets. Finally, the scenario-based feature fusion and acquisition probability-based practicality evaluation method construct a useful tool for feature extraction with consideration of driving behaviors. This work highlights the importance of balancing the performance and practicality of HIs during the development of feature-based battery health monitoring algorithms.

This paper investigates the problem of estimating the larger location parameter of two general location families from a decision-theoretic perspective. In this estimation problem, we use the criteria of minimizing the risk function and the Pitman closeness under a general bowl-shaped loss function. Inadmissibility of a general location and equivariant estimators is provided. We prove that a natural estimator (analogue of the BLEE of unordered location parameters) is inadmissible, under certain conditions on underlying densities, and propose a dominating estimator. We also derive a class of improved estimators using the Kubokawa's IERD approach and observe that the boundary estimator of this class is the Brewster-Zidek type estimator. Additionally, under the generalized Pitman criterion, we show that the natural estimator is inadmissible and obtain improved estimators. The results are implemented for different loss functions, and explicit expressions for the dominating estimators are provided. We explore the applications of these results to for exponential and normal distribution under specified loss functions. A simulation is also conducted to compare the risk performance of the proposed estimators. Finally, we present a real-life data analysis to illustrate the practical applications of the paper's findings.

Multi-level modeling is an important approach for analyzing complex survey data using multi-stage sampling. However, estimation of multi-level models can be challenging when we combine several datasets with distinct hierarchies with sampling weights. This paper presents a method for combining multiple datasets with different hierarchical structures due to distinct informative sampling designs for the same survey. To develop an approach with complete generality, we propose to define a pseudo-cluster, a cluster containing only a singleton observation, to unify the data structure and thereby enable estimation of multi-level models incorporating sampling weights across the combined sample. We justify incorporating sampling weights at each level of the hierarchical model and in doing-so define a pseudo-likelihood estimation procedure. Simulation studies are used to illustrate the effect of incorporating sampling designs in this challenging multi-level modeling scenario. We demonstrate in the simulation studies that considering a linear mixed model with sampling weights provides unbiased estimates of model parameters and enhances the estimation of the variance components of the random effects. The proposed method is illustrated through a novel application from the National Survey of Healthcare Organizations and Systems that sought to determine which organizational characteristics or traits, as measured in the surveys, have the strongest average relationship to the percentage of depression and anxiety diagnoses in physician practices in the US.

Mediation analysis is widely used for investigating direct and indirect causal pathways through which an effect arises. However, many mediation analysis studies are challenged by missingness in the mediator and outcome. In general, when the mediator and outcome are missing not at random, the direct and indirect effects are not identifiable without further assumptions. In this work, we study the identifiability of the direct and indirect effects under some interpretable mechanisms that allow for missing not at random in the mediator and outcome. We evaluate the performance of statistical inference under those mechanisms through simulation studies and illustrate the proposed methods via the National Job Corps Study.

The recently published ICH E9 addendum on estimands in clinical trials provides a framework for precisely defining the treatment effect that is to be estimated, but says little about estimation methods. Here we report analyses of a clinical trial in type 2 diabetes, targeting the effects of randomised treatment, handling rescue treatment and discontinuation of randomised treatment using the so-called hypothetical strategy. We show how this can be estimated using mixed models for repeated measures, multiple imputation, inverse probability of treatment weighting, G-formula and G-estimation. We describe their assumptions and practical details of their implementation using packages in R. We report the results of these analyses, broadly finding similar estimates and standard errors across the estimators. We discuss various considerations relevant when choosing an estimation approach, including computational time, how to handle missing data, whether to include post intercurrent event data in the analysis, whether and how to adjust for additional time-varying confounders, and whether and how to model different types of ICE separately.

Discovering causal relationships from observational data is a fundamental yet challenging task. In some applications, it may suffice to learn the causal features of a given response variable, instead of learning the entire underlying causal structure. Invariant causal prediction (ICP, Peters et al., 2016) is a method for causal feature selection which requires data from heterogeneous settings. ICP assumes that the mechanism for generating the response from its direct causes is the same in all settings and exploits this invariance to output a subset of the causal features. The framework of ICP has been extended to general additive noise models and to nonparametric settings using conditional independence testing. However, nonparametric conditional independence testing often suffers from low power (or poor type I error control) and the aforementioned parametric models are not suitable for applications in which the response is not measured on a continuous scale, but rather reflects categories or counts. To bridge this gap, we develop ICP in the context of transformation models (TRAMs), allowing for continuous, categorical, count-type, and uninformatively censored responses (we show that, in general, these model classes do not allow for identifiability when there is no exogenous heterogeneity). We propose TRAM-GCM, a test for invariance of a subset of covariates, based on the expected conditional covariance between environments and score residuals which satisfies uniform asymptotic level guarantees. For the special case of linear shift TRAMs, we propose an additional invariance test, TRAM-Wald, based on the Wald statistic. We implement both proposed methods in the open-source R package "tramicp" and show in simulations that under the correct model specification, our approach empirically yields higher power than nonparametric ICP based on conditional independence testing.

Health-related quality of life (Hr-QoL) scales provide crucial information on neurodegenerative disease progression, help improving patient care, and constitute a meaningful endpoint for therapeutic research. However, Hr-QoL progression is usually poorly documented, as for multiple system atrophy (MSA), a rare and rapidly progressing alpha-synucleinopathy. This work aimed to describe Hr-QoL progression during the natural course of MSA, explore disparities between patients, and identify informative items using a four-step statistical strategy.We leveraged the data of the French MSA cohort comprising annual assessments with the MSA-QoL questionnaire for more than 500 patients over up to 11 years. The four-step strategy (1) determined the subdimensions of Hr-QoL in MSA; (2) modelled the subdimension trajectories over time, accounting for the risk of death; (3) mapped the sequence of item impairments with disease stages; and (4) identified the most informative items specific to each disease stage.Among the 536 patients included, 50% were women and they were aged on average 65.1 years old at entry. Among them, 63.1% died during the follow-up. Four dimensions were identified. In addition to the original motor, nonmotor, and emotional domains, an oropharyngeal component was highlighted. While the motor and oropharyngeal domains deteriorated rapidly, the nonmotor and emotional aspects were already slightly to moderately impaired at cohort entry and deteriorated slowly over the course of the disease. Impairments were associated with sex, diagnosis subtype, and delay since symptom onset. Except for the emotional domain, each dimension was driven by key identified items.Hr-QoL is a multidimensional concept that deteriorates progressively over the course of MSA and brings essential knowledge for improving patient care. As exemplified with MSA, the thorough description of Hr-QoL using the 4-step original analysis can provide new perspectives on neurodegenerative diseases' management to ultimately deliver better support focused on the patient's perspective.

Natural revision seems so natural: it changes beliefs as little as possible to incorporate new information. Yet, some counterexamples show it wrong. It is so conservative that it never fully believes. It only believes in the current conditions. This is right in some cases and wrong in others. Which is which? The answer requires extending natural revision from simple formulae expressing universal truths (something holds) to conditionals expressing conditional truth (something holds in certain conditions). The extension is based on the basic principles natural revision follows, identified as minimal change, indifference and naivety: change beliefs as little as possible; equate the likeliness of scenarios by default; believe all until contradicted. The extension says that natural revision restricts changes to the current conditions. A comparison with an unrestricting revision shows what exactly the current conditions are. It is not what currently considered true if it contradicts the new information. It includes something more and more unlikely until the new information is at least possible.

Knowledge graphs (KGs) of real-world facts about entities and their relationships are useful resources for a variety of natural language processing tasks. However, because knowledge graphs are typically incomplete, it is useful to perform knowledge graph completion or link prediction, i.e. predict whether a relationship not in the knowledge graph is likely to be true. This paper serves as a comprehensive survey of embedding models of entities and relationships for knowledge graph completion, summarizing up-to-date experimental results on standard benchmark datasets and pointing out potential future research directions.

北京阿比特科技有限公司