亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Recent advances in self-supervised learning and neural network scaling have enabled the creation of large models, known as foundation models, which can be easily adapted to a wide range of downstream tasks. The current paradigm for comparing foundation models involves evaluating them with aggregate metrics on various benchmark datasets. This method of model comparison is heavily dependent on the chosen evaluation metric, which makes it unsuitable for situations where the ideal metric is either not obvious or unavailable. In this work, we present a methodology for directly comparing the embedding space geometry of foundation models, which facilitates model comparison without the need for an explicit evaluation metric. Our methodology is grounded in random graph theory and enables valid hypothesis testing of embedding similarity on a per-datum basis. Further, we demonstrate how our methodology can be extended to facilitate population level model comparison. In particular, we show how our framework can induce a manifold of models equipped with a distance function that correlates strongly with several downstream metrics. We remark on the utility of this population level model comparison as a first step towards a taxonomic science of foundation models.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · INTERACT · 表示學習 · 知識 (knowledge) · 掩碼 ·
2024 年 2 月 21 日

In recent years, self-supervised learning has emerged as a powerful tool to harness abundant unlabelled data for representation learning and has been broadly adopted in diverse areas. However, when applied to molecular representation learning (MRL), prevailing techniques such as masked sub-unit reconstruction often fall short, due to the high degree of freedom in the possible combinations of atoms within molecules, which brings insurmountable complexity to the masking-reconstruction paradigm. To tackle this challenge, we introduce REMO, a self-supervised learning framework that takes advantage of well-defined atom-combination rules in common chemistry. Specifically, REMO pre-trains graph/Transformer encoders on 1.7 million known chemical reactions in the literature. We propose two pre-training objectives: Masked Reaction Centre Reconstruction (MRCR) and Reaction Centre Identification (RCI). REMO offers a novel solution to MRL by exploiting the underlying shared patterns in chemical reactions as \textit{context} for pre-training, which effectively infers meaningful representations of common chemistry knowledge. Such contextual representations can then be utilized to support diverse downstream molecular tasks with minimum finetuning, such as affinity prediction and drug-drug interaction prediction. Extensive experimental results on MoleculeACE, ACNet, drug-drug interaction (DDI), and reaction type classification show that across all tested downstream tasks, REMO outperforms the standard baseline of single-molecule masked modeling used in current MRL. Remarkably, REMO is the pioneering deep learning model surpassing fingerprint-based methods in activity cliff benchmarks.

Bayesian neural networks (BNNs) have recently gained popularity due to their ability to quantify model uncertainty. However, specifying a prior for BNNs that captures relevant domain knowledge is often extremely challenging. In this work, we propose a framework for integrating general forms of domain knowledge (i.e., any knowledge that can be represented by a loss function) into a BNN prior through variational inference, while enabling computationally efficient posterior inference and sampling. Specifically, our approach results in a prior over neural network weights that assigns high probability mass to models that better align with our domain knowledge, leading to posterior samples that also exhibit this behavior. We show that BNNs using our proposed domain knowledge priors outperform those with standard priors (e.g., isotropic Gaussian, Gaussian process), successfully incorporating diverse types of prior information such as fairness, physics rules, and healthcare knowledge and achieving better predictive performance. We also present techniques for transferring the learned priors across different model architectures, demonstrating their broad utility across various settings.

Machine learning models have achieved great success in supervised learning tasks for end-to-end training, which requires a large amount of labeled data that is not always feasible. Recently, many practitioners have shifted to self-supervised learning methods that utilize cheap unlabeled data to learn a general feature extractor via pre-training, which can be further applied to personalized downstream tasks by simply training an additional linear layer with limited labeled data. However, such a process may also raise concerns regarding data poisoning attacks. For instance, indiscriminate data poisoning attacks, which aim to decrease model utility by injecting a small number of poisoned data into the training set, pose a security risk to machine learning models, but have only been studied for end-to-end supervised learning. In this paper, we extend the exploration of the threat of indiscriminate attacks on downstream tasks that apply pre-trained feature extractors. Specifically, we propose two types of attacks: (1) the input space attacks, where we modify existing attacks to directly craft poisoned data in the input space. However, due to the difficulty of optimization under constraints, we further propose (2) the feature targeted attacks, where we mitigate the challenge with three stages, firstly acquiring target parameters for the linear head; secondly finding poisoned features by treating the learned feature representations as a dataset; and thirdly inverting the poisoned features back to the input space. Our experiments examine such attacks in popular downstream tasks of fine-tuning on the same dataset and transfer learning that considers domain adaptation. Empirical results reveal that transfer learning is more vulnerable to our attacks. Additionally, input space attacks are a strong threat if no countermeasures are posed, but are otherwise weaker than feature targeted attacks.

For reinforcement learning on complex stochastic systems, it is desirable to effectively leverage the information from historical samples collected in previous iterations to accelerate policy optimization. Classical experience replay, while effective, treats all observations uniformly, neglecting their relative importance. To address this limitation, we introduce a novel Variance Reduction Experience Replay (VRER) framework, enabling the selective reuse of relevant samples to improve policy gradient estimation. VRER, as an adaptable method that can seamlessly integrate with different policy optimization algorithms, forms the foundation of our sample-efficient off-policy algorithm known as Policy Optimization with VRER (PG-VRER). Furthermore, the lack of a rigorous theoretical understanding of the experience replay method in the literature motivates us to introduce a novel theoretical framework that accounts for sample dependencies induced by Markovian noise and behavior policy interdependencies. This framework is then employed to analyze the finite-time convergence of our VRER-based policy optimization algorithm, revealing a crucial bias-variance trade-off in policy gradient estimates: the reuse of old experience introduces increased bias while simultaneously reducing gradient variance. Extensive experiments have shown that VRER offers a notable acceleration in learning optimal policies and enhances the performance of state-of-the-art (SOTA) policy optimization approaches.

Federated recommendation is a prominent use case within federated learning, yet it remains susceptible to various attacks, from user to server-side vulnerabilities. Poisoning attacks are particularly notable among user-side attacks, as participants upload malicious model updates to deceive the global model, often intending to promote or demote specific targeted items. This study investigates strategies for executing promotion attacks in federated recommender systems. Current poisoning attacks on federated recommender systems often rely on additional information, such as the local training data of genuine users or item popularity. However, such information is challenging for the potential attacker to obtain. Thus, there is a need to develop an attack that requires no extra information apart from item embeddings obtained from the server. In this paper, we introduce a novel fake user based poisoning attack named PoisonFRS to promote the attacker-chosen targeted item in federated recommender systems without requiring knowledge about user-item rating data, user attributes, or the aggregation rule used by the server. Extensive experiments on multiple real-world datasets demonstrate that PoisonFRS can effectively promote the attacker-chosen targeted item to a large portion of genuine users and outperform current benchmarks that rely on additional information about the system. We further observe that the model updates from both genuine and fake users are indistinguishable within the latent space.

Data augmentation, the artificial creation of training data for machine learning by transformations, is a widely studied research field across machine learning disciplines. While it is useful for increasing the generalization capabilities of a model, it can also address many other challenges and problems, from overcoming a limited amount of training data over regularizing the objective to limiting the amount data used to protect privacy. Based on a precise description of the goals and applications of data augmentation (C1) and a taxonomy for existing works (C2), this survey is concerned with data augmentation methods for textual classification and aims to achieve a concise and comprehensive overview for researchers and practitioners (C3). Derived from the taxonomy, we divided more than 100 methods into 12 different groupings and provide state-of-the-art references expounding which methods are highly promising (C4). Finally, research perspectives that may constitute a building block for future work are given (C5).

Ensembles over neural network weights trained from different random initialization, known as deep ensembles, achieve state-of-the-art accuracy and calibration. The recently introduced batch ensembles provide a drop-in replacement that is more parameter efficient. In this paper, we design ensembles not only over weights, but over hyperparameters to improve the state of the art in both settings. For best performance independent of budget, we propose hyper-deep ensembles, a simple procedure that involves a random search over different hyperparameters, themselves stratified across multiple random initializations. Its strong performance highlights the benefit of combining models with both weight and hyperparameter diversity. We further propose a parameter efficient version, hyper-batch ensembles, which builds on the layer structure of batch ensembles and self-tuning networks. The computational and memory costs of our method are notably lower than typical ensembles. On image classification tasks, with MLP, LeNet, and Wide ResNet 28-10 architectures, our methodology improves upon both deep and batch ensembles.

Graph Neural Networks (GNNs), which generalize deep neural networks to graph-structured data, have drawn considerable attention and achieved state-of-the-art performance in numerous graph related tasks. However, existing GNN models mainly focus on designing graph convolution operations. The graph pooling (or downsampling) operations, that play an important role in learning hierarchical representations, are usually overlooked. In this paper, we propose a novel graph pooling operator, called Hierarchical Graph Pooling with Structure Learning (HGP-SL), which can be integrated into various graph neural network architectures. HGP-SL incorporates graph pooling and structure learning into a unified module to generate hierarchical representations of graphs. More specifically, the graph pooling operation adaptively selects a subset of nodes to form an induced subgraph for the subsequent layers. To preserve the integrity of graph's topological information, we further introduce a structure learning mechanism to learn a refined graph structure for the pooled graph at each layer. By combining HGP-SL operator with graph neural networks, we perform graph level representation learning with focus on graph classification task. Experimental results on six widely used benchmarks demonstrate the effectiveness of our proposed model.

Recently, graph neural networks (GNNs) have revolutionized the field of graph representation learning through effectively learned node embeddings, and achieved state-of-the-art results in tasks such as node classification and link prediction. However, current GNN methods are inherently flat and do not learn hierarchical representations of graphs---a limitation that is especially problematic for the task of graph classification, where the goal is to predict the label associated with an entire graph. Here we propose DiffPool, a differentiable graph pooling module that can generate hierarchical representations of graphs and can be combined with various graph neural network architectures in an end-to-end fashion. DiffPool learns a differentiable soft cluster assignment for nodes at each layer of a deep GNN, mapping nodes to a set of clusters, which then form the coarsened input for the next GNN layer. Our experimental results show that combining existing GNN methods with DiffPool yields an average improvement of 5-10% accuracy on graph classification benchmarks, compared to all existing pooling approaches, achieving a new state-of-the-art on four out of five benchmark data sets.

Automatically creating the description of an image using any natural languages sentence like English is a very challenging task. It requires expertise of both image processing as well as natural language processing. This paper discuss about different available models for image captioning task. We have also discussed about how the advancement in the task of object recognition and machine translation has greatly improved the performance of image captioning model in recent years. In addition to that we have discussed how this model can be implemented. In the end, we have also evaluated the performance of model using standard evaluation matrices.

北京阿比特科技有限公司