亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We extend trust region policy optimization (TRPO) to multi-agent reinforcement learning (MARL) problems. We show that the policy update of TRPO can be transformed into a distributed consensus optimization problem for multi-agent cases. By making a series of approximations to the consensus optimization model, we propose a decentralized MARL algorithm, which we call multi-agent TRPO (MATRPO). This algorithm can optimize distributed policies based on local observations and private rewards. The agents do not need to know observations, rewards, policies or value/action-value functions of other agents. The agents only share a likelihood ratio with their neighbors during the training process. The algorithm is fully decentralized and privacy-preserving. Our experiments on two cooperative games demonstrate its robust performance on complicated MARL tasks.

相關內容

In cooperative multi-agent reinforcement learning (CMARL), it is critical for agents to achieve a balance between self-exploration and team collaboration. However, agents can hardly accomplish the team task without coordination and they would be trapped in a local optimum where easy cooperation is accessed without enough individual exploration. Recent works mainly concentrate on agents' coordinated exploration, which brings about the exponentially grown exploration of the state space. To address this issue, we propose Self-Motivated Multi-Agent Exploration (SMMAE), which aims to achieve success in team tasks by adaptively finding a trade-off between self-exploration and team cooperation. In SMMAE, we train an independent exploration policy for each agent to maximize their own visited state space. Each agent learns an adjustable exploration probability based on the stability of the joint team policy. The experiments on highly cooperative tasks in StarCraft II micromanagement benchmark (SMAC) demonstrate that SMMAE can explore task-related states more efficiently, accomplish coordinated behaviours and boost the learning performance.

We consider the problem of distilling efficient network topologies for collective communications. We provide an algorithmic framework for constructing direct-connect topologies optimized for the latency vs. bandwidth trade-off associated with the workload. Our approach synthesizes many different topologies and schedules for a given cluster size and degree and then identifies the appropriate topology and schedule for a given workload. Our algorithms start from small, optimal base topologies and associated communication schedules and use a set of techniques that can be iteratively applied to derive much larger topologies and schedules. Additionally, we incorporate well-studied large-scale graph topologies into our algorithmic framework by producing efficient collective schedules for them using a novel polynomial-time algorithm. Our evaluation uses multiple testbeds and large-scale simulations to demonstrate significant performance benefits from our derived topologies and schedules.

Majority of off-policy reinforcement learning algorithms use overestimation bias control techniques. Most of these techniques rooted in heuristics, primarily addressing the consequences of overestimation rather than its fundamental origins. In this work we present a novel approach to the bias correction, similar in spirit to Double Q-Learning. We propose using a policy in form of a mixture with two components. Each policy component is maximized and assessed by separate networks, which removes any basis for the overestimation bias. Our approach shows promising near-SOTA results on a small set of MuJoCo environments.

Unsupervised anomaly localization, which plays a critical role in industrial manufacturing, is to identify anomalous regions that deviate from patterns established exclusively from nominal samples. Recent mainstream methods focus on approximating the target feature distribution by leveraging embeddings from ImageNet models. However, a common issue in many anomaly localization methods is the lack of adaptability of the feature approximations to specific targets. Consequently, their ability to effectively identify anomalous regions relies significantly on the data coverage provided by the finite resources in a memory bank. In this paper, we propose a novel subspace-aware feature reconstruction framework for anomaly localization. To achieve adaptive feature approximation, our proposed method involves the reconstruction of the feature representation through the self-expressive model designed to learn low-dimensional subspaces. Importantly, the sparsity of the subspace representation contributes to covering feature patterns from the same subspace with fewer resources, leading to a reduction in the memory bank. Extensive experiments across three industrial benchmark datasets demonstrate that our approach achieves competitive anomaly localization performance compared to state-of-the-art methods by adaptively reconstructing target features with a small number of samples.

Despite achieving great success, graph neural networks (GNNs) are vulnerable to adversarial attacks. Existing defenses focus on developing adversarial training or model modification. In this paper, we propose and formulate graph adversarial immunization, i.e., vaccinating part of graph structure to improve certifiable robustness of graph against any admissible adversarial attack. We first propose edge-level immunization to vaccinate node pairs. Unfortunately, such edge-level immunization cannot defend against emerging node injection attacks, since it only immunizes existing node pairs. To this end, we further propose node-level immunization. To avoid computationally intensive combinatorial optimization associated with adversarial immunization, we develop AdvImmune-Edge and AdvImmune-Node algorithms to effectively obtain the immune node pairs or nodes. Extensive experiments demonstrate the superiority of AdvImmune methods. In particular, AdvImmune-Node remarkably improves the ratio of robust nodes by 79%, 294%, and 100%, after immunizing only 5% of nodes. Furthermore, AdvImmune methods show excellent defensive performance against various attacks, outperforming state-of-the-art defenses. To the best of our knowledge, this is the first attempt to improve certifiable robustness from graph data perspective without losing performance on clean graphs, providing new insights into graph adversarial learning.

Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.

Graph Convolutional Networks (GCNs) have received increasing attention in recent machine learning. How to effectively leverage the rich structural information in complex graphs, such as knowledge graphs with heterogeneous types of entities and relations, is a primary open challenge in the field. Most GCN methods are either restricted to graphs with a homogeneous type of edges (e.g., citation links only), or focusing on representation learning for nodes only instead of jointly optimizing the embeddings of both nodes and edges for target-driven objectives. This paper addresses these limitations by proposing a novel framework, namely the GEneralized Multi-relational Graph Convolutional Networks (GEM-GCN), which combines the power of GCNs in graph-based belief propagation and the strengths of advanced knowledge-base embedding methods, and goes beyond. Our theoretical analysis shows that GEM-GCN offers an elegant unification of several well-known GCN methods as specific cases, with a new perspective of graph convolution. Experimental results on benchmark datasets show the advantageous performance of GEM-GCN over strong baseline methods in the tasks of knowledge graph alignment and entity classification.

Graph convolutional neural networks have recently shown great potential for the task of zero-shot learning. These models are highly sample efficient as related concepts in the graph structure share statistical strength allowing generalization to new classes when faced with a lack of data. However, multi-layer architectures, which are required to propagate knowledge to distant nodes in the graph, dilute the knowledge by performing extensive Laplacian smoothing at each layer and thereby consequently decrease performance. In order to still enjoy the benefit brought by the graph structure while preventing dilution of knowledge from distant nodes, we propose a Dense Graph Propagation (DGP) module with carefully designed direct links among distant nodes. DGP allows us to exploit the hierarchical graph structure of the knowledge graph through additional connections. These connections are added based on a node's relationship to its ancestors and descendants. A weighting scheme is further used to weigh their contribution depending on the distance to the node to improve information propagation in the graph. Combined with finetuning of the representations in a two-stage training approach our method outperforms state-of-the-art zero-shot learning approaches.

This paper presents a new multi-objective deep reinforcement learning (MODRL) framework based on deep Q-networks. We propose the use of linear and non-linear methods to develop the MODRL framework that includes both single-policy and multi-policy strategies. The experimental results on two benchmark problems including the two-objective deep sea treasure environment and the three-objective mountain car problem indicate that the proposed framework is able to converge to the optimal Pareto solutions effectively. The proposed framework is generic, which allows implementation of different deep reinforcement learning algorithms in different complex environments. This therefore overcomes many difficulties involved with standard multi-objective reinforcement learning (MORL) methods existing in the current literature. The framework creates a platform as a testbed environment to develop methods for solving various problems associated with the current MORL. Details of the framework implementation can be referred to //www.deakin.edu.au/~thanhthi/drl.htm.

We investigate the problem of automatically determining what type of shoe left an impression found at a crime scene. This recognition problem is made difficult by the variability in types of crime scene evidence (ranging from traces of dust or oil on hard surfaces to impressions made in soil) and the lack of comprehensive databases of shoe outsole tread patterns. We find that mid-level features extracted by pre-trained convolutional neural nets are surprisingly effective descriptors for this specialized domains. However, the choice of similarity measure for matching exemplars to a query image is essential to good performance. For matching multi-channel deep features, we propose the use of multi-channel normalized cross-correlation and analyze its effectiveness. Our proposed metric significantly improves performance in matching crime scene shoeprints to laboratory test impressions. We also show its effectiveness in other cross-domain image retrieval problems: matching facade images to segmentation labels and aerial photos to map images. Finally, we introduce a discriminatively trained variant and fine-tune our system through our proposed metric, obtaining state-of-the-art performance.

北京阿比特科技有限公司