Multivariate Hawkes processes (MHP) are a class of point processes in which events at different coordinates interact through mutual excitation. The weighted adjacency matrix of the MHP encodes the strength of the relations, and shares its support with the causal graph of interactions of the process. We consider the problem of testing for causal relationships across the dimensions of a marked MHP. The null hypothesis is that a joint group of adjacency coefficients are null, corresponding to the absence of interactions. The alternative is that they are positive, and the associated interactions do exist. To this end, we introduce a novel estimation procedure in the context of a large sample of independent event sequences. We construct the associated likelihood ratio test and derive the asymptotic distribution of the test statistic as a mixture of chi squared laws. We offer two applications on financial datasets to illustrate the performance of our method. In the first one, our test reveals a deviation from a static equilibrium in bidders' strategies on retail online auctions. In the second one, we uncover some factors at play in the dynamics of German intraday power prices.
This contribution introduces a model order reduction approach for an advection-reaction problem with a parametrized reaction function. The underlying discretization uses an ultraweak formulation with an $L^2$-like trial space and an 'optimal' test space as introduced by Demkowicz et al. This ensures the stability of the discretization and in addition allows for a symmetric reformulation of the problem in terms of a dual solution which can also be interpreted as the normal equations of an adjoint least-squares problem. Classic model order reduction techniques can then be applied to the space of dual solutions which also immediately gives a reduced primal space. We show that the necessary computations do not require the reconstruction of any primal solutions and can instead be performed entirely on the space of dual solutions. We prove exponential convergence of the Kolmogorov $N$-width and show that a greedy algorithm produces quasi-optimal approximation spaces for both the primal and the dual solution space. Numerical experiments based on the benchmark problem of a catalytic filter confirm the applicability of the proposed method.
An essential problem in statistics and machine learning is the estimation of expectations involving PDFs with intractable normalizing constants. The self-normalized importance sampling (SNIS) estimator, which normalizes the IS weights, has become the standard approach due to its simplicity. However, the SNIS has been shown to exhibit high variance in challenging estimation problems, e.g, involving rare events or posterior predictive distributions in Bayesian statistics. Further, most of the state-of-the-art adaptive importance sampling (AIS) methods adapt the proposal as if the weights had not been normalized. In this paper, we propose a framework that considers the original task as estimation of a ratio of two integrals. In our new formulation, we obtain samples from a joint proposal distribution in an extended space, with two of its marginals playing the role of proposals used to estimate each integral. Importantly, the framework allows us to induce and control a dependency between both estimators. We propose a construction of the joint proposal that decomposes in two (multivariate) marginals and a coupling. This leads to a two-stage framework suitable to be integrated with existing or new AIS and/or variational inference (VI) algorithms. The marginals are adapted in the first stage, while the coupling can be chosen and adapted in the second stage. We show in several examples the benefits of the proposed methodology, including an application to Bayesian prediction with misspecified models.
The knockoffs is a recently proposed powerful framework that effectively controls the false discovery rate (FDR) for variable selection. However, none of the existing knockoff solutions are directly suited to handle multivariate or high-dimensional functional data, which has become increasingly prevalent in various scientific applications. In this paper, we propose a novel functional model-X knockoffs selection framework tailored to sparse high-dimensional functional models, and show that our proposal can achieve the effective FDR control for any sample size. Furthermore, we illustrate the proposed functional model-X knockoffs selection procedure along with the associated theoretical guarantees for both FDR control and asymptotic power using examples of commonly adopted functional linear additive regression models and the functional graphical model. In the construction of functional knockoffs, we integrate essential components including the correlation operator matrix, the Karhunen-Lo\`eve expansion, and semidefinite programming, and develop executable algorithms. We demonstrate the superiority of our proposed methods over the competitors through both extensive simulations and the analysis of two brain imaging datasets.
In the study of extremes, the presence of asymptotic independence signifies that extreme events across multiple variables are probably less likely to occur together. Although well-understood in a bivariate context, the concept remains relatively unexplored when addressing the nuances of joint occurrence of extremes in higher dimensions. In this paper, we propose a notion of mutual asymptotic independence to capture the behavior of joint extremes in dimensions larger than two and contrast it with the classical notion of (pairwise) asymptotic independence. Furthermore, we define $k$-wise asymptotic independence which lies in between pairwise and mutual asymptotic independence. The concepts are compared using examples of Archimedean, Gaussian and Marshall-Olkin copulas among others. Notably, for the popular Gaussian copula, we provide explicit conditions on the correlation matrix for mutual asymptotic independence to hold; moreover, we are able to compute exact tail orders for various tail events.
This paper studies the influence of probabilism and non-determinism on some quantitative aspect X of the execution of a system modeled as a Markov decision process (MDP). To this end, the novel notion of demonic variance is introduced: For a random variable X in an MDP M, it is defined as 1/2 times the maximal expected squared distance of the values of X in two independent execution of M in which also the non-deterministic choices are resolved independently by two distinct schedulers. It is shown that the demonic variance is between 1 and 2 times as large as the maximal variance of X in M that can be achieved by a single scheduler. This allows defining a non-determinism score for M and X measuring how strongly the difference of X in two executions of M can be influenced by the non-deterministic choices. Properties of MDPs M with extremal values of the non-determinism score are established. Further, the algorithmic problems of computing the maximal variance and the demonic variance are investigated for two random variables, namely weighted reachability and accumulated rewards. In the process, also the structure of schedulers maximizing the variance and of scheduler pairs realizing the demonic variance is analyzed.
Quantum low-density parity-check codes are a promising candidate for fault-tolerant quantum computing with considerably reduced overhead compared to the surface code. However, the lack of a practical decoding algorithm remains a barrier to their implementation. In this work, we introduce localized statistics decoding, a reliability-guided inversion decoder that is highly parallelizable and applicable to arbitrary quantum low-density parity-check codes. Our approach employs a parallel matrix factorization strategy, which we call on-the-fly elimination, to identify, validate, and solve local decoding regions on the decoding graph. Through numerical simulations, we show that localized statistics decoding matches the performance of state-of-the-art decoders while reducing the runtime complexity for operation in the sub-threshold regime. Importantly, our decoder is more amenable to implementation on specialized hardware, positioning it as a promising candidate for decoding real-time syndromes from experiments.
Confidence assessments of semantic segmentation algorithms in remote sensing are important. It is a desirable property of models to a priori know if they produce an incorrect output. Evaluations of the confidence assigned to the estimates of models for the task of classification in Earth Observation (EO) are crucial as they can be used to achieve improved semantic segmentation performance and prevent high error rates during inference and deployment. The model we develop, the Confidence Assessments of classification algorithms for Semantic segmentation (CAS) model, performs confidence evaluations at both the segment and pixel levels, and outputs both labels and confidence. The outcome of this work has important applications. The main application is the evaluation of EO Foundation Models on semantic segmentation downstream tasks, in particular land cover classification using satellite Copernicus Sentinel-2 data. The evaluation shows that the proposed model is effective and outperforms other alternative baseline models.
Rational approximation is a powerful tool to obtain accurate surrogates for nonlinear functions that are easy to evaluate and linearize. The interpolatory adaptive Antoulas--Anderson (AAA) method is one approach to construct such approximants numerically. For large-scale vector- and matrix-valued functions, however, the direct application of the set-valued variant of AAA becomes inefficient. We propose and analyze a new sketching approach for such functions called sketchAAA that, with high probability, leads to much better approximants than previously suggested approaches while retaining efficiency. The sketching approach works in a black-box fashion where only evaluations of the nonlinear function at sampling points are needed. Numerical tests with nonlinear eigenvalue problems illustrate the efficacy of our approach, with speedups above 200 for sampling large-scale black-box functions without sacrificing on accuracy.
Riemannian optimization is concerned with problems, where the independent variable lies on a smooth manifold. There is a number of problems from numerical linear algebra that fall into this category, where the manifold is usually specified by special matrix structures, such as orthogonality or definiteness. Following this line of research, we investigate tools for Riemannian optimization on the symplectic Stiefel manifold. We complement the existing set of numerical optimization algorithms with a Riemannian trust region method tailored to the symplectic Stiefel manifold. To this end, we derive a matrix formula for the Riemannian Hessian under a right-invariant metric. Moreover, we propose a novel retraction for approximating the Riemannian geodesics. Finally, we conduct a comparative study in which we juxtapose the performance of the Riemannian variants of the steepest descent, conjugate gradients, and trust region methods on selected matrix optimization problems that feature symplectic constraints.
Practical parameter identifiability in ODE-based epidemiological models is a known issue, yet one that merits further study. It is essentially ubiquitous due to noise and errors in real data. In this study, to avoid uncertainty stemming from data of unknown quality, simulated data with added noise are used to investigate practical identifiability in two distinct epidemiological models. Particular emphasis is placed on the role of initial conditions, which are assumed unknown, except those that are directly measured. Instead of just focusing on one method of estimation, we use and compare results from various broadly used methods, including maximum likelihood and Markov Chain Monte Carlo (MCMC) estimation. Among other findings, our analysis revealed that the MCMC estimator is overall more robust than the point estimators considered. Its estimates and predictions are improved when the initial conditions of certain compartments are fixed so that the model becomes globally identifiable. For the point estimators, whether fixing or fitting the that are not directly measured improves parameter estimates is model-dependent. Specifically, in the standard SEIR model, fixing the initial condition for the susceptible population S(0) improved parameter estimates, while this was not true when fixing the initial condition of the asymptomatic population in a more involved model. Our study corroborates the change in quality of parameter estimates upon usage of pre-peak or post-peak time-series under consideration. Finally, our examples suggest that in the presence of significantly noisy data, the value of structural identifiability is moot.