亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The Church Problem asks for the construction of a procedure which, given a logical specification A(I,O) between input omega-strings I and output omega-strings O, determines whether there exists an operator F that implements the specification in the sense that A(I, F(I)) holds for all inputs I. Buchi and Landweber provided a procedure to solve the Church problem for MSO specifications and operators computable by finite-state automata. We investigate a generalization of the Church synthesis problem to the continuous time of the non-negative reals. We show that in the continuous time there are phenomena which are very different from the canonical discrete time domain of the natural numbers.

相關內容

讓 iOS 8 和 OS X Yosemite 無縫切換的一個新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source:

We introduce Probabilistic Regular Expressions (PRE), a probabilistic analogue of regular expressions denoting probabilistic languages in which every word is assigned a probability of being generated. We present and prove the completeness of an inference system for reasoning about probabilistic language equivalence of PRE based on Salomaa's axiomatisation of Kleene Algebra.

Stochastic Gradient (SG) Markov Chain Monte Carlo algorithms (MCMC) are popular algorithms for Bayesian sampling in the presence of large datasets. However, they come with little theoretical guarantees and assessing their empirical performances is non-trivial. In such context, it is crucial to develop algorithms that are robust to the choice of hyperparameters and to gradients heterogeneity since, in practice, both the choice of step-size and behaviour of target gradients induce hard-to-control biases in the invariant distribution. In this work we introduce the stochastic gradient Barker dynamics (SGBD) algorithm, extending the recently developed Barker MCMC scheme, a robust alternative to Langevin-based sampling algorithms, to the stochastic gradient framework. We characterize the impact of stochastic gradients on the Barker transition mechanism and develop a bias-corrected version that, under suitable assumptions, eliminates the error due to the gradient noise in the proposal. We illustrate the performance on a number of high-dimensional examples, showing that SGBD is more robust to hyperparameter tuning and to irregular behavior of the target gradients compared to the popular stochastic gradient Langevin dynamics algorithm.

Recently, Accattoli introduced the Exponential Substitution Calculus (ESC) given by untyped proof terms for Intuitionistic Multiplicative Exponential Linear Logic (IMELL), endowed with rewriting rules at-a-distance for cut elimination. He also introduced a new cut elimination strategy, dubbed the good strategy, and showed that its number of steps is a time cost model with polynomial overhead for the ESC/IMELL, and the first such one. Here, we refine Accattoli's result by introducing an abstract machine for ESC and proving that it implements the good strategy and computes cut-free terms/proofs within a linear overhead.

Traditionally, classical numerical schemes have been employed to solve partial differential equations (PDEs) using computational methods. Recently, neural network-based methods have emerged. Despite these advancements, neural network-based methods, such as physics-informed neural networks (PINNs) and neural operators, exhibit deficiencies in robustness and generalization. To address these issues, numerous studies have integrated classical numerical frameworks with machine learning techniques, incorporating neural networks into parts of traditional numerical methods. In this study, we focus on hyperbolic conservation laws by replacing traditional numerical fluxes with neural operators. To this end, we developed loss functions inspired by established numerical schemes related to conservation laws and approximated numerical fluxes using Fourier neural operators (FNOs). Our experiments demonstrated that our approach combines the strengths of both traditional numerical schemes and FNOs, outperforming standard FNO methods in several respects. For instance, we demonstrate that our method is robust, has resolution invariance, and is feasible as a data-driven method. In particular, our method can make continuous predictions over time and exhibits superior generalization capabilities with out-of-distribution (OOD) samples, which are challenges that existing neural operator methods encounter.

Group fairness for Graph Neural Networks (GNNs), which emphasizes algorithmic decisions neither favoring nor harming certain groups defined by sensitive attributes (e.g., race and gender), has gained considerable attention. In particular, the objective of group fairness is to ensure that the decisions made by GNNs are independent of the sensitive attribute. To achieve this objective, most existing approaches involve eliminating sensitive attribute information in node representations or algorithmic decisions. However, such ways may also eliminate task-related information due to its inherent correlation with the sensitive attribute, leading to a sacrifice in utility. In this work, we focus on improving the fairness of GNNs while preserving task-related information and propose a fair GNN framework named FairSAD. Instead of eliminating sensitive attribute information, FairSAD enhances the fairness of GNNs via Sensitive Attribute Disentanglement (SAD), which separates the sensitive attribute-related information into an independent component to mitigate its impact. Additionally, FairSAD utilizes a channel masking mechanism to adaptively identify the sensitive attribute-related component and subsequently decorrelates it. Overall, FairSAD minimizes the impact of the sensitive attribute on GNN outcomes rather than eliminating sensitive attributes, thereby preserving task-related information associated with the sensitive attribute. Furthermore, experiments conducted on several real-world datasets demonstrate that FairSAD outperforms other state-of-the-art methods by a significant margin in terms of both fairness and utility performance. Our source code is available at //github.com/ZzoomD/FairSAD.

2D-based Industrial Anomaly Detection has been widely discussed, however, multimodal industrial anomaly detection based on 3D point clouds and RGB images still has many untouched fields. Existing multimodal industrial anomaly detection methods directly concatenate the multimodal features, which leads to a strong disturbance between features and harms the detection performance. In this paper, we propose Multi-3D-Memory (M3DM), a novel multimodal anomaly detection method with hybrid fusion scheme: firstly, we design an unsupervised feature fusion with patch-wise contrastive learning to encourage the interaction of different modal features; secondly, we use a decision layer fusion with multiple memory banks to avoid loss of information and additional novelty classifiers to make the final decision. We further propose a point feature alignment operation to better align the point cloud and RGB features. Extensive experiments show that our multimodal industrial anomaly detection model outperforms the state-of-the-art (SOTA) methods on both detection and segmentation precision on MVTec-3D AD dataset. Code is available at //github.com/nomewang/M3DM.

Disentangled Representation Learning (DRL) aims to learn a model capable of identifying and disentangling the underlying factors hidden in the observable data in representation form. The process of separating underlying factors of variation into variables with semantic meaning benefits in learning explainable representations of data, which imitates the meaningful understanding process of humans when observing an object or relation. As a general learning strategy, DRL has demonstrated its power in improving the model explainability, controlability, robustness, as well as generalization capacity in a wide range of scenarios such as computer vision, natural language processing, data mining etc. In this article, we comprehensively review DRL from various aspects including motivations, definitions, methodologies, evaluations, applications and model designs. We discuss works on DRL based on two well-recognized definitions, i.e., Intuitive Definition and Group Theory Definition. We further categorize the methodologies for DRL into four groups, i.e., Traditional Statistical Approaches, Variational Auto-encoder Based Approaches, Generative Adversarial Networks Based Approaches, Hierarchical Approaches and Other Approaches. We also analyze principles to design different DRL models that may benefit different tasks in practical applications. Finally, we point out challenges in DRL as well as potential research directions deserving future investigations. We believe this work may provide insights for promoting the DRL research in the community.

Recently, a considerable literature has grown up around the theme of Graph Convolutional Network (GCN). How to effectively leverage the rich structural information in complex graphs, such as knowledge graphs with heterogeneous types of entities and relations, is a primary open challenge in the field. Most GCN methods are either restricted to graphs with a homogeneous type of edges (e.g., citation links only), or focusing on representation learning for nodes only instead of jointly propagating and updating the embeddings of both nodes and edges for target-driven objectives. This paper addresses these limitations by proposing a novel framework, namely the Knowledge Embedding based Graph Convolutional Network (KE-GCN), which combines the power of GCNs in graph-based belief propagation and the strengths of advanced knowledge embedding (a.k.a. knowledge graph embedding) methods, and goes beyond. Our theoretical analysis shows that KE-GCN offers an elegant unification of several well-known GCN methods as specific cases, with a new perspective of graph convolution. Experimental results on benchmark datasets show the advantageous performance of KE-GCN over strong baseline methods in the tasks of knowledge graph alignment and entity classification.

Graph Neural Networks (GNN) is an emerging field for learning on non-Euclidean data. Recently, there has been increased interest in designing GNN that scales to large graphs. Most existing methods use "graph sampling" or "layer-wise sampling" techniques to reduce training time. However, these methods still suffer from degrading performance and scalability problems when applying to graphs with billions of edges. This paper presents GBP, a scalable GNN that utilizes a localized bidirectional propagation process from both the feature vectors and the training/testing nodes. Theoretical analysis shows that GBP is the first method that achieves sub-linear time complexity for both the precomputation and the training phases. An extensive empirical study demonstrates that GBP achieves state-of-the-art performance with significantly less training/testing time. Most notably, GBP can deliver superior performance on a graph with over 60 million nodes and 1.8 billion edges in less than half an hour on a single machine.

We investigate a lattice-structured LSTM model for Chinese NER, which encodes a sequence of input characters as well as all potential words that match a lexicon. Compared with character-based methods, our model explicitly leverages word and word sequence information. Compared with word-based methods, lattice LSTM does not suffer from segmentation errors. Gated recurrent cells allow our model to choose the most relevant characters and words from a sentence for better NER results. Experiments on various datasets show that lattice LSTM outperforms both word-based and character-based LSTM baselines, achieving the best results.

北京阿比特科技有限公司