亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Quality control and quality assurance are challenges in Direct Metal Laser Melting (DMLM). Intermittent machine diagnostics and downstream part inspections catch problems after undue cost has been incurred processing defective parts. In this paper we demonstrate two methodologies for in-process fault detection and part quality prediction that can be readily deployed on existing commercial DMLM systems with minimal hardware modification. Novel features were derived from the time series of common photodiode sensors along with standard machine control signals. A Bayesian approach attributes measurements to one of multiple process states and a least squares regression model predicts severity of certain material defects.

相關內容

> The Metal framework supports GPU-accelerated advanced 3D graphics rendering and data-parallel computation workloads. Metal provides a modern and streamlined API for fine-grain, low-level control of the organization, processing, and submission of graphics and computation commands and the management of the associated data and resources for these commands. A primary goal of Metal is to minimize the CPU overhead necessary for executing these GPU workloads.

To certify UAV operations in populated areas, risk mitigation strategies -- such as Emergency Landing (EL) -- must be in place to account for potential failures. EL aims at reducing ground risk by finding safe landing areas using on-board sensors. The first contribution of this paper is to present a new EL approach, in line with safety requirements introduced in recent research. In particular, the proposed EL pipeline includes mechanisms to monitor learning based components during execution. This way, another contribution is to study the behavior of Machine Learning Runtime Monitoring (MLRM) approaches within the context of a real-world critical system. A new evaluation methodology is introduced, and applied to assess the practical safety benefits of three MLRM mechanisms. The proposed approach is compared to a default mitigation strategy (open a parachute when a failure is detected), and appears to be much safer.

This paper presents a comprehensive review of methods covering significant subjective and objective human stress detection techniques available in the literature. The methods for measuring human stress responses could include subjective questionnaires (developed by psychologists) and objective markers observed using data from wearable and non-wearable sensors. In particular, wearable sensor-based methods commonly use data from electroencephalography, electrocardiogram, galvanic skin response, electromyography, electrodermal activity, heart rate, heart rate variability, and photoplethysmography both individually and in multimodal fusion strategies. Whereas, methods based on non-wearable sensors include strategies such as analyzing pupil dilation and speech, smartphone data, eye movement, body posture, and thermal imaging. Whenever a stressful situation is encountered by an individual, physiological, physical, or behavioral changes are induced which help in coping with the challenge at hand. A wide range of studies has attempted to establish a relationship between these stressful situations and the response of human beings by using different kinds of psychological, physiological, physical, and behavioral measures. Inspired by the lack of availability of a definitive verdict about the relationship of human stress with these different kinds of markers, a detailed survey about human stress detection methods is conducted in this paper. In particular, we explore how stress detection methods can benefit from artificial intelligence utilizing relevant data from various sources. This review will prove to be a reference document that would provide guidelines for future research enabling effective detection of human stress conditions.

Rapidly expanding Clinical AI applications worldwide have the potential to impact to all areas of medical practice. Medical imaging applications constitute a vast majority of approved clinical AI applications. Though healthcare systems are eager to adopt AI solutions a fundamental question remains: \textit{what happens after the AI model goes into production?} We use the CheXpert and PadChest public datasets to build and test a medical imaging AI drift monitoring workflow that tracks data and model drift without contemporaneous ground truth. We simulate drift in multiple experiments to compare model performance with our novel multi-modal drift metric, which uses DICOM metadata, image appearance representation from a variational autoencoder (VAE), and model output probabilities as input. Through experimentation, we demonstrate a strong proxy for ground truth performance using unsupervised distributional shifts in relevant metadata, predicted probabilities, and VAE latent representation. Our key contributions include (1) proof-of-concept for medical imaging drift detection including use of VAE and domain specific statistical methods (2) a multi-modal methodology for measuring and unifying drift metrics (3) new insights into the challenges and solutions for observing deployed medical imaging AI (4) creation of open-source tools enabling others to easily run their own workflows or scenarios. This work has important implications for addressing the translation gap related to continuous medical imaging AI model monitoring in dynamic healthcare environments.

Deep learning has been successfully applied to solve various complex problems ranging from big data analytics to computer vision and human-level control. Deep learning advances however have also been employed to create software that can cause threats to privacy, democracy and national security. One of those deep learning-powered applications recently emerged is deepfake. Deepfake algorithms can create fake images and videos that humans cannot distinguish them from authentic ones. The proposal of technologies that can automatically detect and assess the integrity of digital visual media is therefore indispensable. This paper presents a survey of algorithms used to create deepfakes and, more importantly, methods proposed to detect deepfakes in the literature to date. We present extensive discussions on challenges, research trends and directions related to deepfake technologies. By reviewing the background of deepfakes and state-of-the-art deepfake detection methods, this study provides a comprehensive overview of deepfake techniques and facilitates the development of new and more robust methods to deal with the increasingly challenging deepfakes.

We present a novelty detection framework for Convolutional Neural Network (CNN) sensors that we call Sensor-Activated Feature Extraction One-Class Classification (SAFE-OCC). We show that this framework enables the safe use of computer vision sensors in process control architectures. Emergent control applications use CNN models to map visual data to a state signal that can be interpreted by the controller. Incorporating such sensors introduces a significant system operation vulnerability because CNN sensors can exhibit high prediction errors when exposed to novel (abnormal) visual data. Unfortunately, identifying such novelties in real-time is nontrivial. To address this issue, the SAFE-OCC framework leverages the convolutional blocks of the CNN to create an effective feature space to conduct novelty detection using a desired one-class classification technique. This approach engenders a feature space that directly corresponds to that used by the CNN sensor and avoids the need to derive an independent latent space. We demonstrate the effectiveness of SAFE-OCC via simulated control environments.

Anomaly detection is a significant problem faced in several research areas. Detecting and correctly classifying something unseen as anomalous is a challenging problem that has been tackled in many different manners over the years. Generative Adversarial Networks (GANs) and the adversarial training process have been recently employed to face this task yielding remarkable results. In this paper we survey the principal GAN-based anomaly detection methods, highlighting their pros and cons. Our contributions are the empirical validation of the main GAN models for anomaly detection, the increase of the experimental results on different datasets and the public release of a complete Open Source toolbox for Anomaly Detection using GANs.

Deep Learning (DL) is the most widely used tool in the contemporary field of computer vision. Its ability to accurately solve complex problems is employed in vision research to learn deep neural models for a variety of tasks, including security critical applications. However, it is now known that DL is vulnerable to adversarial attacks that can manipulate its predictions by introducing visually imperceptible perturbations in images and videos. Since the discovery of this phenomenon in 2013~[1], it has attracted significant attention of researchers from multiple sub-fields of machine intelligence. In [2], we reviewed the contributions made by the computer vision community in adversarial attacks on deep learning (and their defenses) until the advent of year 2018. Many of those contributions have inspired new directions in this area, which has matured significantly since witnessing the first generation methods. Hence, as a legacy sequel of [2], this literature review focuses on the advances in this area since 2018. To ensure authenticity, we mainly consider peer-reviewed contributions published in the prestigious sources of computer vision and machine learning research. Besides a comprehensive literature review, the article also provides concise definitions of technical terminologies for non-experts in this domain. Finally, this article discusses challenges and future outlook of this direction based on the literature reviewed herein and [2].

Fake news travels at unprecedented speeds, reaches global audiences and puts users and communities at great risk via social media platforms. Deep learning based models show good performance when trained on large amounts of labeled data on events of interest, whereas the performance of models tends to degrade on other events due to domain shift. Therefore, significant challenges are posed for existing detection approaches to detect fake news on emergent events, where large-scale labeled datasets are difficult to obtain. Moreover, adding the knowledge from newly emergent events requires to build a new model from scratch or continue to fine-tune the model, which can be challenging, expensive, and unrealistic for real-world settings. In order to address those challenges, we propose an end-to-end fake news detection framework named MetaFEND, which is able to learn quickly to detect fake news on emergent events with a few verified posts. Specifically, the proposed model integrates meta-learning and neural process methods together to enjoy the benefits of these approaches. In particular, a label embedding module and a hard attention mechanism are proposed to enhance the effectiveness by handling categorical information and trimming irrelevant posts. Extensive experiments are conducted on multimedia datasets collected from Twitter and Weibo. The experimental results show our proposed MetaFEND model can detect fake news on never-seen events effectively and outperform the state-of-the-art methods.

Object detection in remote sensing, especially in aerial images, remains a challenging problem due to low image resolution, complex backgrounds, and variation of scale and angles of objects in images. In current implementations, multi-scale based and angle-based networks have been proposed and generate promising results with aerial image detection. In this paper, we propose a novel loss function, called Salience Biased Loss (SBL), for deep neural networks, which uses salience information of the input image to achieve improved performance for object detection. Our novel loss function treats training examples differently based on input complexity in order to avoid the over-contribution of easy cases in the training process. In our experiments, RetinaNet was trained with SBL to generate an one-stage detector, SBL-RetinaNet. SBL-RetinaNet is applied to the largest existing public aerial image dataset, DOTA. Experimental results show our proposed loss function with the RetinaNet architecture outperformed other state-of-art object detection models by at least 4.31 mAP, and RetinaNet by 2.26 mAP with the same inference speed of RetinaNet.

Scene text detection has been made great progress in recent years. The detection manners are evolving from axis-aligned rectangle to rotated rectangle and further to quadrangle. However, current datasets contain very little curve text, which can be widely observed in scene images such as signboard, product name and so on. To raise the concerns of reading curve text in the wild, in this paper, we construct a curve text dataset named CTW1500, which includes over 10k text annotations in 1,500 images (1000 for training and 500 for testing). Based on this dataset, we pioneering propose a polygon based curve text detector (CTD) which can directly detect curve text without empirical combination. Moreover, by seamlessly integrating the recurrent transverse and longitudinal offset connection (TLOC), the proposed method can be end-to-end trainable to learn the inherent connection among the position offsets. This allows the CTD to explore context information instead of predicting points independently, resulting in more smooth and accurate detection. We also propose two simple but effective post-processing methods named non-polygon suppress (NPS) and polygonal non-maximum suppression (PNMS) to further improve the detection accuracy. Furthermore, the proposed approach in this paper is designed in an universal manner, which can also be trained with rectangular or quadrilateral bounding boxes without extra efforts. Experimental results on CTW-1500 demonstrate our method with only a light backbone can outperform state-of-the-art methods with a large margin. By evaluating only in the curve or non-curve subset, the CTD + TLOC can still achieve the best results. Code is available at //github.com/Yuliang-Liu/Curve-Text-Detector.

北京阿比特科技有限公司