亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This work contributes to the limited literature on estimating the diffusivity or drift coefficient of nonlinear SPDEs driven by additive noise. Assuming that the solution is measured locally in space and over a finite time interval, we show that the augmented maximum likelihood estimator introduced in Altmeyer, Reiss (2020) retains its asymptotic properties when used for semilinear SPDEs that satisfy some abstract, and verifiable, conditions. The proofs of asymptotic results are based on splitting the solution in linear and nonlinear parts and fine regularity properties in $L^p$-spaces. The obtained general results are applied to particular classes of equations, including stochastic reaction-diffusion equations. The stochastic Burgers equation, as an example with first order nonlinearity, is an interesting borderline case of the general results, and is treated by a Wiener chaos expansion. We conclude with numerical examples that validate the theoretical results.

相關內容

We describe a (nonparametric) prediction algorithm for spatial data, based on a canonical factorization of the spectral density function. We provide theoretical results showing that the predictor has desirable asymptotic properties. Finite sample performance is assessed in a Monte Carlo study that also compares our algorithm to a rival nonparametric method based on the infinite AR representation of the dynamics of the data. Finally, we apply our methodology to predict house prices in Los Angeles.

Global spectral methods offer the potential to compute solutions of partial differential equations numerically to very high accuracy. In this work, we develop a novel global spectral method for linear partial differential equations on cubes by extending ideas of Chebop2 [Townsend and Olver, J. Comput. Phys., 299 (2015)] to the three-dimensional setting utilizing expansions in tensorized polynomial bases. Solving the discretized PDE involves a linear system that can be recast as a linear tensor equation. Under suitable additional assumptions, the structure of these equations admits for an efficient solution via the blocked recursive solver [Chen and Kressner, Numer. Algorithms, 84 (2020)]. In the general case, when these assumptions are not satisfied, this solver is used as a preconditioner to speed up computations.

Applications of free-flying robots range from entertainment purposes to aerospace applications. The control algorithm for such systems requires accurate estimation of their states based on sensor feedback. The objective of this paper is to design and verify a lightweight state estimation algorithm for a free-flying open kinematic chain that estimates the state of its center-of-mass and its posture. Instead of utilizing a nonlinear dynamics model, this research proposes a cascade structure of two Kalman filters (KF), which relies on the information from the ballistic motion of free-falling multibody systems together with feedback from an inertial measurement unit (IMU) and encoders. Multiple algorithms are verified in the simulation that mimics real-world circumstances with Simulink. Several uncertain physical parameters are varied, and the result shows that the proposed estimator outperforms EKF and UKF in terms of tracking performance and computational time.

This study concerns probability distribution estimation of sample maximum. The traditional approach is the parametric fitting to the limiting distribution - the generalized extreme value distribution; however, the model in finite cases is misspecified to a certain extent. We propose a plug-in type of nonparametric estimator which does not need model specification. It is proved that both asymptotic convergence rates depend on the tail index and the second order parameter. As the tail gets light, the degree of misspecification of the parametric fitting becomes large, that means the convergence rate becomes slow. In the Weibull cases, which can be seen as the limit of tail-lightness, only the nonparametric distribution estimator keeps its consistency. Finally, we report the results of numerical experiments.

The thermal radiative transfer (TRT) equations form an integro-differential system that describes the propagation and collisional interactions of photons. Computing accurate and efficient numerical solutions TRT are challenging for several reasons, the first of which is that TRT is defined on a high-dimensional phase. In order to reduce the dimensionality of the phase space, classical approaches such as the P$_N$ (spherical harmonics) or the S$_N$ (discrete ordinates) ansatz are often used in the literature. In this work, we introduce a novel approach: the hybrid discrete (H$^T_N$) approximation to the radiative thermal transfer equations. This approach acquires desirable properties of both P$_N$ and S$_N$, and indeed reduces to each of these approximations in various limits: H$^1_N$ $\equiv$ P$_N$ and H$^T_0$ $\equiv$ S$_T$. We prove that H$^T_N$ results in a system of hyperbolic equations for all $T\ge 1$ and $N\ge 0$. Another challenge in solving the TRT system is the inherent stiffness due to the large timescale separation between propagation and collisions, especially in the diffusive (i.e., highly collisional) regime. This stiffness challenge can be partially overcome via implicit time integration, although fully implicit methods may become computationally expensive due to the strong nonlinearity and system size. On the other hand, explicit time-stepping schemes that are not also asymptotic-preserving in the highly collisional limit require resolving the mean-free path between collisions, making such schemes prohibitively expensive. In this work we develop a numerical method that is based on a nodal discontinuous Galerkin discretization in space, coupled with a semi-implicit discretization in time. We conduct several numerical experiments to verify the accuracy, efficiency, and robustness of the H$^T_N$ ansatz and the numerical discretizations.

We consider an elliptic linear-quadratic parameter estimation problem with a finite number of parameters. An adaptive finite element method driven by an a posteriori error estimator for the error in the parameters is presented. Unlike prior results in the literature, our estimator, which is composed of standard energy error residual estimators for the state equation and suitable co-state problems, reflects the faster convergence of the parameter error compared to the (co)-state variables. We show optimal convergence rates of our method; in particular and unlike prior works, we prove that the estimator decreases with a rate that is the sum of the best approximation rates of the state and co-state variables. Experiments confirm that our method matches the convergence rate of the parameter error.

Measurement error is a pervasive issue which renders the results of an analysis unreliable. The measurement error literature contains numerous correction techniques, which can be broadly divided into those which aim to produce exactly consistent estimators, and those which are only approximately consistent. While consistency is a desirable property, it is typically attained only under specific model assumptions. Two techniques, regression calibration and simulation extrapolation, are used frequently in a wide variety of parametric and semiparametric settings. However, in many settings these methods are only approximately consistent. We generalize these corrections, relaxing assumptions placed on replicate measurements. Under regularity conditions, the estimators are shown to be asymptotically normal, with a sandwich estimator for the asymptotic variance. Through simulation, we demonstrate the improved performance of the modified estimators, over the standard techniques, when these assumptions are violated. We motivate these corrections using the Framingham Heart Study, and apply the generalized techniques to an analysis of these data.

Theoretical analyses for graph learning methods often assume a complete observation of the input graph. Such an assumption might not be useful for handling any-size graphs due to the scalability issues in practice. In this work, we develop a theoretical framework for graph classification problems in the partial observation setting (i.e., subgraph samplings). Equipped with insights from graph limit theory, we propose a new graph classification model that works on a randomly sampled subgraph and a novel topology to characterize the representability of the model. Our theoretical framework contributes a theoretical validation of mini-batch learning on graphs and leads to new learning-theoretic results on generalization bounds as well as size-generalizability without assumptions on the input.

This paper considers how to obtain MCMC quantitative convergence bounds which can be translated into tight complexity bounds in high-dimensional {settings}. We propose a modified drift-and-minorization approach, which establishes generalized drift conditions defined in subsets of the state space. The subsets are called the "large sets", and are chosen to rule out some "bad" states which have poor drift property when the dimension of the state space gets large. Using the "large sets" together with a "fitted family of drift functions", a quantitative bound can be obtained which can be translated into a tight complexity bound. As a demonstration, we analyze several Gibbs samplers and obtain complexity upper bounds for the mixing time. In particular, for one example of Gibbs sampler which is related to the James--Stein estimator, we show that the number of iterations required for the Gibbs sampler to converge is constant under certain conditions on the observed data and the initial state. It is our hope that this modified drift-and-minorization approach can be employed in many other specific examples to obtain complexity bounds for high-dimensional Markov chains.

Label Ranking (LR) corresponds to the problem of learning a hypothesis that maps features to rankings over a finite set of labels. We adopt a nonparametric regression approach to LR and obtain theoretical performance guarantees for this fundamental practical problem. We introduce a generative model for Label Ranking, in noiseless and noisy nonparametric regression settings, and provide sample complexity bounds for learning algorithms in both cases. In the noiseless setting, we study the LR problem with full rankings and provide computationally efficient algorithms using decision trees and random forests in the high-dimensional regime. In the noisy setting, we consider the more general cases of LR with incomplete and partial rankings from a statistical viewpoint and obtain sample complexity bounds using the One-Versus-One approach of multiclass classification. Finally, we complement our theoretical contributions with experiments, aiming to understand how the input regression noise affects the observed output.

北京阿比特科技有限公司