In the setting of homotopy type theory, each type can be interpreted as a space. Moreover, given an element of a type, i.e. a point in the corresponding space, one can define another type which encodes the space of loops based at this point. In particular, when the type we started with is a groupoid, this loop space is always a group. Conversely, to every group we can associate a type (more precisely, a pointed connected groupoid) whose loop space is this group: this operation is called delooping. The generic procedures for constructing such deloopings of groups (based on torsors, or on descriptions of Eilenberg-MacLane spaces as higher inductive types) are unfortunately equipped with elimination principles which do not directly allow eliminating to untruncated types, and are thus difficult to work with in practice. Here, we construct deloopings of the cyclic groups $\mathbb{Z}_m$ which are cellular, and thus do not suffer from this shortcoming. In order to do so, we provide type-theoretic implementations of lens spaces, which constitute an important family of spaces in algebraic topology. Our definition is based on the computation of an iterative join of suitable maps from the circle to an arbitrary delooping of $\mathbb{Z}_m$. In some sense, this work generalizes the construction of real projective spaces by Buchholtz and Rijke, which handles the case m=2, although the general setting requires more involved tools. Finally, we use this construction to also provide cellular descriptions of dihedral groups, and explain how we can hope to use those to compute the cohomology and higher actions of such groups.
We develop a constructive model of homotopy type theory in a Quillen model category that classically presents the usual homotopy theory of spaces. Our model is based on presheaves over the cartesian cube category, a well-behaved Eilenberg-Zilber category. The key innovation is an additional equivariance condition in the specification of the cubical Kan fibrations, which can be described as the pullback of an interval-based class of uniform fibrations in the category of symmetric sequences of cubical sets. The main technical results in the development of our model have been formalized in a computer proof assistant.
Parameter inference for linear and non-Gaussian state space models is challenging because the likelihood function contains an intractable integral over the latent state variables. Exact inference using Markov chain Monte Carlo is computationally expensive, particularly for long time series data. Variational Bayes methods are useful when exact inference is infeasible. These methods approximate the posterior density of the parameters by a simple and tractable distribution found through optimisation. In this paper, we propose a novel sequential variational Bayes approach that makes use of the Whittle likelihood for computationally efficient parameter inference in this class of state space models. Our algorithm, which we call Recursive Variational Gaussian Approximation with the Whittle Likelihood (R-VGA-Whittle), updates the variational parameters by processing data in the frequency domain. At each iteration, R-VGA-Whittle requires the gradient and Hessian of the Whittle log-likelihood, which are available in closed form for a wide class of models. Through several examples using a linear Gaussian state space model and a univariate/bivariate non-Gaussian stochastic volatility model, we show that R-VGA-Whittle provides good approximations to posterior distributions of the parameters and is very computationally efficient when compared to asymptotically exact methods such as Hamiltonian Monte Carlo.
In this paper, we consider an inverse space-dependent source problem for a time-fractional diffusion equation. To deal with the ill-posedness of the problem, we transform the problem into an optimal control problem with total variational (TV) regularization. In contrast to the classical Tikhonov model incorporating $L^2$ penalty terms, the inclusion of a TV term proves advantageous in reconstructing solutions that exhibit discontinuities or piecewise constancy. The control problem is approximated by a fully discrete scheme, and convergence results are provided within this framework. Furthermore, a lineraed primal-dual iterative algorithm is proposed to solve the discrete control model based on an equivalent saddle-point reformulation, and several numerical experiments are presented to demonstrate the efficiency of the algorithm.
Identifiability, and the closely related idea of partial smoothness, unify classical active set methods and more general notions of solution structure. Diverse optimization algorithms generate iterates in discrete time that are eventually confined to identifiable sets. We present two fresh perspectives on identifiability. The first distills the notion to a simple metric property, applicable not just in Euclidean settings but to optimization over manifolds and beyond; the second reveals analogous continuous-time behavior for subgradient descent curves. The Kurdya-Lojasiewicz property typically governs convergence in both discrete and continuous time: we explore its interplay with identifiability.
We present algorithms for computing strongly singular and near-singular surface integrals over curved triangular patches, based on singularity subtraction, the continuation approach, and transplanted Gauss quadrature. We demonstrate the accuracy and robustness of our method for quadratic basis functions and quadratic triangles by integrating it into a boundary element code and solving several scattering problems in 3D. We also give numerical evidence that the utilization of curved boundary elements enhances computational efficiency compared to conventional planar elements.
The present work concerns the derivation of a numerical scheme to approximate weak solutions of the Euler equations with a gravitational source term. The designed scheme is proved to be fully well-balanced since it is able to exactly preserve all moving equilibrium solutions, as well as the corresponding steady solutions at rest obtained when the velocity vanishes. Moreover, the proposed scheme is entropy-preserving since it satisfies all fully discrete entropy inequalities. In addition, in order to satisfy the required admissibility of the approximate solutions, the positivity of both approximate density and pressure is established. Several numerical experiments attest the relevance of the developed numerical method.
Let $G$ be a group with undecidable domino problem (such as $\mathbb{Z}^2$). We prove the undecidability of all nontrivial dynamical properties for sofic $G$-subshifts, that such a result fails for SFTs, and an undecidability result for dynamical properties of $G$-SFTs similar to the Adian-Rabin theorem. For $G$ amenable we prove that topological entropy is not computable from presentations of SFTs, and a more general result for dynamical invariants taking values in partially ordered sets.
Complex conjugate matrix equations (CCME) have aroused the interest of many researchers because of computations and antilinear systems. Existing research is dominated by its time-invariant solving methods, but lacks proposed theories for solving its time-variant version. Moreover, artificial neural networks are rarely studied for solving CCME. In this paper, starting with the earliest CCME, zeroing neural dynamics (ZND) is applied to solve its time-variant version. Firstly, the vectorization and Kronecker product in the complex field are defined uniformly. Secondly, Con-CZND1 model and Con-CZND2 model are proposed and theoretically prove convergence and effectiveness. Thirdly, three numerical experiments are designed to illustrate the effectiveness of the two models, compare their differences, highlight the significance of neural dynamics in the complex field, and refine the theory related to ZND.
We present a new, monolithic first--order (both in time and space) BSSNOK formulation of the coupled Einstein--Euler equations. The entire system of hyperbolic PDEs is solved in a completely unified manner via one single numerical scheme applied to both the conservative sector of the matter part and to the first--order strictly non--conservative sector of the spacetime evolution. The coupling between matter and space-time is achieved via algebraic source terms. The numerical scheme used for the solution of the new monolithic first order formulation is a path-conservative central WENO (CWENO) finite difference scheme, with suitable insertions to account for the presence of the non--conservative terms. By solving several crucial tests of numerical general relativity, including a stable neutron star, Riemann problems in relativistic matter with shock waves and the stable long-time evolution of single and binary puncture black holes up and beyond the binary merger, we show that our new CWENO scheme, introduced two decades ago for the compressible Euler equations of gas dynamics, can be successfully applied also to numerical general relativity, solving all equations at the same time with one single numerical method. In the future the new monolithic approach proposed in this paper may become an attractive alternative to traditional methods that couple central finite difference schemes with Kreiss-Oliger dissipation for the space-time part with totally different TVD schemes for the matter evolution and which are currently the state of the art in the field.
We prove the well posedness in weighted Sobolev spaces of certain linear and nonlinear elliptic boundary value problems posed on convex domains and under singular forcing. It is assumed that the weights belong to the Muckenhoupt class $A_p$ with $p \in (1,\infty$). We also propose and analyze a convergent finite element discretization for the nonlinear elliptic boundary value problems mentioned above. As an instrumental result, we prove that the discretization of certain linear problems are well posed in weighted spaces.