亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The algorithms based on the technique of optimal $k$-thresholding (OT) were recently proposed for signal recovery, and they are very different from the traditional family of hard thresholding methods. However, the computational cost for OT-based algorithms remains high at the current stage of their development. This stimulates the development of the so-called natural thresholding (NT) algorithm and its variants in this paper. The family of NT algorithms is developed through the first-order approximation of the so-called regularized optimal $k$-thresholding model, and thus the computational cost for this family of algorithms is significantly lower than that of the OT-based algorithms. The guaranteed performance of NT-type algorithms for signal recovery from noisy measurements is shown under the restricted isometry property and concavity of the objective function of regularized optimal $k$-thresholding model. Empirical results indicate that the NT-type algorithms are robust and very comparable to several mainstream algorithms for sparse signal recovery.

相關內容

Positive and unlabelled learning is an important problem which arises naturally in many applications. The significant limitation of almost all existing methods lies in assuming that the propensity score function is constant (SCAR assumption), which is unrealistic in many practical situations. Avoiding this assumption, we consider parametric approach to the problem of joint estimation of posterior probability and propensity score functions. We show that under mild assumptions when both functions have the same parametric form (e.g. logistic with different parameters) the corresponding parameters are identifiable. Motivated by this, we propose two approaches to their estimation: joint maximum likelihood method and the second approach based on alternating maximization of two Fisher consistent expressions. Our experimental results show that the proposed methods are comparable or better than the existing methods based on Expectation-Maximisation scheme.

Two of the most fundamental challenges in Natural Language Understanding (NLU) at present are: (a) how to establish whether deep learning-based models score highly on NLU benchmarks for the 'right' reasons; and (b) to understand what those reasons would even be. We investigate the behavior of reading comprehension models with respect to two linguistic 'skills': coreference resolution and comparison. We propose a definition for the reasoning steps expected from a system that would be 'reading slowly', and compare that with the behavior of five models of the BERT family of various sizes, observed through saliency scores and counterfactual explanations. We find that for comparison (but not coreference) the systems based on larger encoders are more likely to rely on the 'right' information, but even they struggle with generalization, suggesting that they still learn specific lexical patterns rather than the general principles of comparison.

Owing to resource limitations, efficient computation systems have long been a critical demand for those designing autonomous vehicles. Additionally, sensor cost and size restrict the development of self-driving cars. This paper presents an efficient framework for the operation of vision-based automatic vehicles; a front-facing camera and a few inexpensive radars are the required sensors for driving environment perception. The proposed algorithm comprises a multi-task UNet (MTUNet) network for extracting image features and constrained iterative linear quadratic regulator (CILQR) modules for rapid lateral and longitudinal motion planning. The MTUNet is designed to simultaneously solve lane line segmentation, ego vehicle heading angle regression, road type classification, and traffic object detection tasks at an approximate speed of 40 FPS when an RGB image of size 228 x 228 is fed into it. The CILQR algorithms then take processed MTUNet outputs and radar data as their input to produce driving commands for lateral and longitudinal vehicle automation guidance; both optimal control problems can be solved within 1 ms. The proposed CILQR controllers are shown to be more efficient than the sequential quadratic programming (SQP) methods and can collaborate with the MTUNet to drive a car autonomously in unseen simulation environments for lane-keeping and car-following maneuvers. Our experiments demonstrate that the proposed autonomous driving system is applicable to modern automobiles.

Image interpolation algorithms pervade many modern image processing and analysis applications. However, when their weighting schemes inefficiently generate very unrealistic estimates, they may negatively affect the performance of the end user applications. Therefore, in this work, the author introduced four weighting schemes based on some geometric shapes for digital image interpolation operations. And, the quantity used to express the extent of each shape weight was the normalized area, especially when the sums of areas exceeded a unit square size. The introduced four weighting schemes are based on the minimum side based diameter (MD) of a regular tetragon, hypotenuse based radius (HR), the virtual pixel length based height for the area of the triangle (AT), and the virtual pixel length for hypotenuse based radius for the area of the circle (AC). At the smaller scaling ratio, the image interpolation algorithm based on the HR scheme scored the highest at 66.6 % among non traditional image interpolation algorithms presented. But, at the higher scaling ratio, the AC scheme based image interpolation algorithm scored the highest at 66.6 % among non traditional algorithms presented and, here, its image interpolation quality was generally superior or comparable to the quality of images interpolated by both non traditional and traditional algorithms.

Noisy labels in large E-commerce product data (i.e., product items are placed into incorrect categories) are a critical issue for product categorization task because they are unavoidable, non-trivial to remove and degrade prediction performance significantly. Training a product title classification model which is robust to noisy labels in the data is very important to make product classification applications more practical. In this paper, we study the impact of instance-dependent noise to performance of product title classification by comparing our data denoising algorithm and different noise-resistance training algorithms which were designed to prevent a classifier model from over-fitting to noise. We develop a simple yet effective Deep Neural Network for product title classification to use as a base classifier. Along with recent methods of stimulating instance-dependent noise, we propose a novel noise stimulation algorithm based on product title similarity. Our experiments cover multiple datasets, various noise methods and different training solutions. Results uncover the limit of classification task when noise rate is not negligible and data distribution is highly skewed.

Helmholtz Machines (HMs) are a class of generative models composed of two Sigmoid Belief Networks (SBNs), acting respectively as an encoder and a decoder. These models are commonly trained using a two-step optimization algorithm called Wake-Sleep (WS) and more recently by improved versions, such as Reweighted Wake-Sleep (RWS) and Bidirectional Helmholtz Machines (BiHM). The locality of the connections in an SBN induces sparsity in the Fisher Information Matrices associated to the probabilistic models, in the form of a finely-grained block-diagonal structure. In this paper we exploit this property to efficiently train SBNs and HMs using the natural gradient. We present a novel algorithm, called Natural Reweighted Wake-Sleep (NRWS), that corresponds to the geometric adaptation of its standard version. In a similar manner, we also introduce Natural Bidirectional Helmholtz Machine (NBiHM). Differently from previous work, we will show how for HMs the natural gradient can be efficiently computed without the need of introducing any approximation in the structure of the Fisher information matrix. The experiments performed on standard datasets from the literature show a consistent improvement of NRWS and NBiHM not only with respect to their non-geometric baselines but also with respect to state-of-the-art training algorithms for HMs. The improvement is quantified both in terms of speed of convergence as well as value of the log-likelihood reached after training.

We present local distributed, stochastic algorithms for \emph{alignment} in self-organizing particle systems (SOPS) on two-dimensional lattices, where particles occupy unique sites on the lattice, and particles can make spatial moves to neighboring sites if they are unoccupied. Such models are abstractions of programmable matter, composed of individual computational particles with limited memory, strictly local communication abilities, and modest computational capabilities. We consider oriented particle systems, where particles are assigned a vector pointing in one of $q$ directions, and each particle can compute the angle between its direction and the direction of any neighboring particle, although without knowledge of global orientation with respect to a fixed underlying coordinate system. Particles move stochastically, with each particle able to either modify its direction or make a local spatial move along a lattice edge during a move. We consider two settings: (a) where particle configurations must remain simply connected at all times and (b) where spatial moves are unconstrained and configurations can disconnect. Taking inspiration from the Potts and clock models from statistical physics, we prove that for any $q \geq 2,$ these self-organizing particle systems can be made to collectively align along a single dominant direction (analogous to a solid or ordered state) or remain non-aligned, in which case the fraction of particles oriented along any direction is nearly equal (analogous to a gaseous or disordered state). Moreover, we show that with appropriate settings of the input parameters, we can achieve \emph{compression} and \emph{expansion}, controlling how tightly gathered the particles are, as well as \emph{alignment} or \emph{nonalignment}, producing a single dominant orientation or not.

The dominating NLP paradigm of training a strong neural predictor to perform one task on a specific dataset has led to state-of-the-art performance in a variety of applications (eg. sentiment classification, span-prediction based question answering or machine translation). However, it builds upon the assumption that the data distribution is stationary, ie. that the data is sampled from a fixed distribution both at training and test time. This way of training is inconsistent with how we as humans are able to learn from and operate within a constantly changing stream of information. Moreover, it is ill-adapted to real-world use cases where the data distribution is expected to shift over the course of a model's lifetime. The first goal of this thesis is to characterize the different forms this shift can take in the context of natural language processing, and propose benchmarks and evaluation metrics to measure its effect on current deep learning architectures. We then proceed to take steps to mitigate the effect of distributional shift on NLP models. To this end, we develop methods based on parametric reformulations of the distributionally robust optimization framework. Empirically, we demonstrate that these approaches yield more robust models as demonstrated on a selection of realistic problems. In the third and final part of this thesis, we explore ways of efficiently adapting existing models to new domains or tasks. Our contribution to this topic takes inspiration from information geometry to derive a new gradient update rule which alleviate catastrophic forgetting issues during adaptation.

It has been a long time that computer architecture and systems are optimized to enable efficient execution of machine learning (ML) algorithms or models. Now, it is time to reconsider the relationship between ML and systems, and let ML transform the way that computer architecture and systems are designed. This embraces a twofold meaning: the improvement of designers' productivity, and the completion of the virtuous cycle. In this paper, we present a comprehensive review of work that applies ML for system design, which can be grouped into two major categories, ML-based modelling that involves predictions of performance metrics or some other criteria of interest, and ML-based design methodology that directly leverages ML as the design tool. For ML-based modelling, we discuss existing studies based on their target level of system, ranging from the circuit level to the architecture/system level. For ML-based design methodology, we follow a bottom-up path to review current work, with a scope of (micro-)architecture design (memory, branch prediction, NoC), coordination between architecture/system and workload (resource allocation and management, data center management, and security), compiler, and design automation. We further provide a future vision of opportunities and potential directions, and envision that applying ML for computer architecture and systems would thrive in the community.

Detection and recognition of text in natural images are two main problems in the field of computer vision that have a wide variety of applications in analysis of sports videos, autonomous driving, industrial automation, to name a few. They face common challenging problems that are factors in how text is represented and affected by several environmental conditions. The current state-of-the-art scene text detection and/or recognition methods have exploited the witnessed advancement in deep learning architectures and reported a superior accuracy on benchmark datasets when tackling multi-resolution and multi-oriented text. However, there are still several remaining challenges affecting text in the wild images that cause existing methods to underperform due to there models are not able to generalize to unseen data and the insufficient labeled data. Thus, unlike previous surveys in this field, the objectives of this survey are as follows: first, offering the reader not only a review on the recent advancement in scene text detection and recognition, but also presenting the results of conducting extensive experiments using a unified evaluation framework that assesses pre-trained models of the selected methods on challenging cases, and applies the same evaluation criteria on these techniques. Second, identifying several existing challenges for detecting or recognizing text in the wild images, namely, in-plane-rotation, multi-oriented and multi-resolution text, perspective distortion, illumination reflection, partial occlusion, complex fonts, and special characters. Finally, the paper also presents insight into the potential research directions in this field to address some of the mentioned challenges that are still encountering scene text detection and recognition techniques.

北京阿比特科技有限公司