亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper considers a multi-player resource-sharing game with a fair reward allocation model. Multiple players choose from a collection of resources. Each resource brings a random reward equally divided among the players who choose it. We consider two settings. The first setting is a one-slot game where the mean rewards of the resources are known to all the players, and the objective of player 1 is to maximize their worst-case expected utility. Certain special cases of this setting have explicit solutions. These cases provide interesting yet non-intuitive insights into the problem. The second setting is an online setting, where the game is played over a finite time horizon, where the mean rewards are unknown to the first player. Instead, the first player receives, as feedback, the rewards of the resources they chose after the action. We develop a novel Upper Confidence Bound (UCB) algorithm that minimizes the worst-case regret of the first player using the feedback received.

相關內容

Few-shot named entity recognition (NER) detects named entities within text using only a few annotated examples. One promising line of research is to leverage natural language descriptions of each entity type: the common label PER might, for example, be verbalized as ''person entity.'' In an initial label interpretation learning phase, the model learns to interpret such verbalized descriptions of entity types. In a subsequent few-shot tagset extension phase, this model is then given a description of a previously unseen entity type (such as ''music album'') and optionally a few training examples to perform few-shot NER for this type. In this paper, we systematically explore the impact of a strong semantic prior to interpret verbalizations of new entity types by massively scaling up the number and granularity of entity types used for label interpretation learning. To this end, we leverage an entity linking benchmark to create a dataset with orders of magnitude of more distinct entity types and descriptions as currently used datasets. We find that this increased signal yields strong results in zero- and few-shot NER in in-domain, cross-domain, and even cross-lingual settings. Our findings indicate significant potential for improving few-shot NER through heuristical data-based optimization.

Computer vision techniques play a central role in the perception stack of autonomous vehicles. Such methods are employed to perceive the vehicle surroundings given sensor data. 3D LiDAR sensors are commonly used to collect sparse 3D point clouds from the scene. However, compared to human perception, such systems struggle to deduce the unseen parts of the scene given those sparse point clouds. In this matter, the scene completion task aims at predicting the gaps in the LiDAR measurements to achieve a more complete scene representation. Given the promising results of recent diffusion models as generative models for images, we propose extending them to achieve scene completion from a single 3D LiDAR scan. Previous works used diffusion models over range images extracted from LiDAR data, directly applying image-based diffusion methods. Distinctly, we propose to directly operate on the points, reformulating the noising and denoising diffusion process such that it can efficiently work at scene scale. Together with our approach, we propose a regularization loss to stabilize the noise predicted during the denoising process. Our experimental evaluation shows that our method can complete the scene given a single LiDAR scan as input, producing a scene with more details compared to state-of-the-art scene completion methods. We believe that our proposed diffusion process formulation can support further research in diffusion models applied to scene-scale point cloud data.

The tasks of legal case retrieval have received growing attention from the IR community in the last decade. Relevance feedback techniques with implicit user feedback (e.g., clicks) have been demonstrated to be effective in traditional search tasks (e.g., Web search). In legal case retrieval, however, collecting relevance feedback faces a couple of challenges that are difficult to resolve under existing feedback paradigms. First, legal case retrieval is a complex task as users often need to understand the relationship between legal cases in detail to correctly judge their relevance. Traditional feedback signal such as clicks is too coarse to use as they do not reflect any fine-grained relevance information. Second, legal case documents are usually long, users often need even tens of minutes to read and understand them. Simple behavior signal such as clicks and eye-tracking fixations can hardly be useful when users almost click and examine every part of the document. In this paper, we explore the possibility of solving the feedback problem in legal case retrieval with brain signal. Recent advances in brain signal processing have shown that human emotional can be collected in fine grains through Brain-Machine Interfaces (BMI) without interrupting the users in their tasks. Therefore, we propose a framework for legal case retrieval that uses EEG signal to optimize retrieval results. We collected and create a legal case retrieval dataset with users EEG signal and propose several methods to extract effective EEG features for relevance feedback. Our proposed features achieve a 71% accuracy for feedback prediction with an SVM-RFE model, and our proposed ranking method that takes into account the diverse needs of users can significantly improve user satisfaction for legal case retrieval. Experiment results show that re-ranked result list make user more satisfied.

Calibrating robots into their workspaces is crucial for manipulation tasks. Existing calibration techniques often rely on sensors external to the robot (cameras, laser scanners, etc.) or specialized tools. This reliance complicates the calibration process and increases the costs and time requirements. Furthermore, the associated setup and measurement procedures require significant human intervention, which makes them more challenging to operate. Using the built-in force-torque sensors, which are nowadays a default component in collaborative robots, this work proposes a self-calibration framework where robot-environmental spatial relations are automatically estimated through compliant exploratory actions by the robot itself. The self-calibration approach converges, verifies its own accuracy, and terminates upon completion, autonomously purely through interactive exploration of the environment's geometries. Extensive experiments validate the effectiveness of our self-calibration approach in accurately establishing the robot-environment spatial relationships without the need for additional sensing equipment or any human intervention.

Star-product graphs are a natural extension of the Cartesian product, but have not been well-studied. We show that many important established and emerging network topologies, including HyperX, SlimFly, BundleFly, PolarStar, mesh, and torus, are in fact star-product graphs. While this connection was known for BundleFly and PolarStar, it was not for the others listed. We extend a method of constructing maximal and near-maximal sets of edge-disjoint spanning trees on Cartesian products to the star product, thus obtain maximal or near-maximal sets of edge-disjoint spanning trees on new networks of importance, where such sets can improve bandwidth of collective operations and therefore accelerate many important workloads in high-performance computing.

We consider a two-player dynamic information design problem between a principal and a receiver -- a game is played between the two agents on top of a Markovian system controlled by the receiver's actions, where the principal obtains and strategically shares some information about the underlying system with the receiver in order to influence their actions. In our setting, both players have long-term objectives, and the principal sequentially commits to their strategies instead of committing at the beginning. Further, the principal cannot directly observe the system state, but at every turn they can choose randomized experiments to observe the system partially. The principal can share details about the experiments to the receiver. For our analysis we impose the truthful disclosure rule: the principal is required to truthfully announce the details and the result of each experiment to the receiver immediately after the experiment result is revealed. Based on the received information, the receiver takes an action when its their turn, with the action influencing the state of the underlying system. We show that there exist Perfect Bayesian equilibria in this game where both agents play Canonical Belief Based (CBB) strategies using a compressed version of their information, rather than full information, to choose experiments (for the principal) or actions (for the receiver). We also provide a backward inductive procedure to solve for an equilibrium in CBB strategies.

Video captioning is a challenging task that requires a deep understanding of visual scenes. State-of-the-art methods generate captions using either scene-level or object-level information but without explicitly modeling object interactions. Thus, they often fail to make visually grounded predictions, and are sensitive to spurious correlations. In this paper, we propose a novel spatio-temporal graph model for video captioning that exploits object interactions in space and time. Our model builds interpretable links and is able to provide explicit visual grounding. To avoid unstable performance caused by the variable number of objects, we further propose an object-aware knowledge distillation mechanism, in which local object information is used to regularize global scene features. We demonstrate the efficacy of our approach through extensive experiments on two benchmarks, showing our approach yields competitive performance with interpretable predictions.

Learning with limited data is a key challenge for visual recognition. Few-shot learning methods address this challenge by learning an instance embedding function from seen classes and apply the function to instances from unseen classes with limited labels. This style of transfer learning is task-agnostic: the embedding function is not learned optimally discriminative with respect to the unseen classes, where discerning among them is the target task. In this paper, we propose a novel approach to adapt the embedding model to the target classification task, yielding embeddings that are task-specific and are discriminative. To this end, we employ a type of self-attention mechanism called Transformer to transform the embeddings from task-agnostic to task-specific by focusing on relating instances from the test instances to the training instances in both seen and unseen classes. Our approach also extends to both transductive and generalized few-shot classification, two important settings that have essential use cases. We verify the effectiveness of our model on two standard benchmark few-shot classification datasets --- MiniImageNet and CUB, where our approach demonstrates state-of-the-art empirical performance.

We propose a novel single shot object detection network named Detection with Enriched Semantics (DES). Our motivation is to enrich the semantics of object detection features within a typical deep detector, by a semantic segmentation branch and a global activation module. The segmentation branch is supervised by weak segmentation ground-truth, i.e., no extra annotation is required. In conjunction with that, we employ a global activation module which learns relationship between channels and object classes in a self-supervised manner. Comprehensive experimental results on both PASCAL VOC and MS COCO detection datasets demonstrate the effectiveness of the proposed method. In particular, with a VGG16 based DES, we achieve an mAP of 81.7 on VOC2007 test and an mAP of 32.8 on COCO test-dev with an inference speed of 31.5 milliseconds per image on a Titan Xp GPU. With a lower resolution version, we achieve an mAP of 79.7 on VOC2007 with an inference speed of 13.0 milliseconds per image.

We consider the task of weakly supervised one-shot detection. In this task, we attempt to perform a detection task over a set of unseen classes, when training only using weak binary labels that indicate the existence of a class instance in a given example. The model is conditioned on a single exemplar of an unseen class and a target example that may or may not contain an instance of the same class as the exemplar. A similarity map is computed by using a Siamese neural network to map the exemplar and regions of the target example to a latent representation space and then computing cosine similarity scores between representations. An attention mechanism weights different regions in the target example, and enables learning of the one-shot detection task using the weaker labels alone. The model can be applied to detection tasks from different domains, including computer vision object detection. We evaluate our attention Siamese networks on a one-shot detection task from the audio domain, where it detects audio keywords in spoken utterances. Our model considerably outperforms a baseline approach and yields a 42.6% average precision for detection across 10 unseen classes. Moreover, architectural developments from computer vision object detection models such as a region proposal network can be incorporated into the model architecture, and results show that performance is expected to improve by doing so.

北京阿比特科技有限公司