Motion forecasting is an essential task for autonomous driving, and the effective information utilization from infrastructure and other vehicles can enhance motion forecasting capabilities. Existing research have primarily focused on leveraging single-frame cooperative information to enhance the limited perception capability of the ego vehicle, while underutilizing the motion and interaction information of traffic participants observed from cooperative devices. In this paper, we first propose the cooperative trajectory representations learning paradigm. Specifically, we present V2X-Graph, the first interpretable and end-to-end learning framework for cooperative motion forecasting. V2X-Graph employs an interpretable graph to fully leverage the cooperative motion and interaction contexts. Experimental results on the vehicle-to-infrastructure (V2I) motion forecasting dataset, V2X-Seq, demonstrate the effectiveness of V2X-Graph. To further evaluate on V2X scenario, we construct the first real-world vehicle-to-everything (V2X) motion forecasting dataset V2X-Traj, and the performance shows the advantage of our method. We hope both V2X-Graph and V2X-Traj can facilitate the further development of cooperative motion forecasting. Find project at //github.com/AIR-THU/V2X-Graph, find data at //github.com/AIR-THU/DAIR-V2X-Seq.
Physical reasoning is a crucial aspect in the development of general AI systems, given that human learning starts with interacting with the physical world before progressing to more complex concepts. Although researchers have studied and assessed the physical reasoning of AI approaches through various specific benchmarks, there is no comprehensive approach to evaluating and measuring progress. Therefore, we aim to offer an overview of existing benchmarks and their solution approaches and propose a unified perspective for measuring the physical reasoning capacity of AI systems. We select benchmarks that are designed to test algorithmic performance in physical reasoning tasks. While each of the selected benchmarks poses a unique challenge, their ensemble provides a comprehensive proving ground for an AI generalist agent with a measurable skill level for various physical reasoning concepts. This gives an advantage to such an ensemble of benchmarks over other holistic benchmarks that aim to simulate the real world by intertwining its complexity and many concepts. We group the presented set of physical reasoning benchmarks into subcategories so that more narrow generalist AI agents can be tested first on these groups.
Federated learning is a technique that allows multiple entities to collaboratively train models using their data without compromising data privacy. However, despite its advantages, federated learning can be susceptible to false data injection attacks. In these scenarios, a malicious entity with control over specific agents in the network can manipulate the learning process, leading to a suboptimal model. Consequently, addressing these data injection attacks presents a significant research challenge in federated learning systems. In this paper, we propose a novel technique to detect and mitigate data injection attacks on federated learning systems. Our mitigation method is a local scheme, performed during a single instance of training by the coordinating node, allowing the mitigation during the convergence of the algorithm. Whenever an agent is suspected to be an attacker, its data will be ignored for a certain period, this decision will often be re-evaluated. We prove that with probability 1, after a finite time, all attackers will be ignored while the probability of ignoring a trustful agent becomes 0, provided that there is a majority of truthful agents. Simulations show that when the coordinating node detects and isolates all the attackers, the model recovers and converges to the truthful model.
Estimating direct and indirect causal effects from observational data is crucial to understanding the causal mechanisms and predicting the behaviour under different interventions. Causal mediation analysis is a method that is often used to reveal direct and indirect effects. Deep learning shows promise in mediation analysis, but the current methods only assume latent confounders that affect treatment, mediator and outcome simultaneously, and fail to identify different types of latent confounders (e.g., confounders that only affect the mediator or outcome). Furthermore, current methods are based on the sequential ignorability assumption, which is not feasible for dealing with multiple types of latent confounders. This work aims to circumvent the sequential ignorability assumption and applies the piecemeal deconfounding assumption as an alternative. We propose the Disentangled Mediation Analysis Variational AutoEncoder (DMAVAE), which disentangles the representations of latent confounders into three types to accurately estimate the natural direct effect, natural indirect effect and total effect. Experimental results show that the proposed method outperforms existing methods and has strong generalisation ability. We further apply the method to a real-world dataset to show its potential application.
Despite the decomposition of convolutional kernels for lightweight CNNs being well studied, existing works that rely on tensor network diagrams or hyperdimensional abstraction lack geometry intuition. This work devises a new perspective by linking a 3D-reshaped kernel tensor to its various slice-wise and rank-1 decompositions, permitting a straightforward connection between various tensor approximations and efficient CNN modules. Specifically, it is discovered that a pointwise-depthwise-pointwise (PDP) configuration constitutes a viable construct for lightweight CNNs. Moreover, a novel link to the latest ShiftNet is established, inspiring a first-ever shift layer pruning that achieves nearly 50% compression with < 1% drop in accuracy for ShiftResNet.
Diffusion Probabilistic Models stand as a critical tool in generative modelling, enabling the generation of complex data distributions. This family of generative models yields record-breaking performance in tasks such as image synthesis, video generation, and molecule design. Despite their capabilities, their efficiency, especially in the reverse process, remains a challenge due to slow convergence rates and high computational costs. In this paper, we introduce an approach that leverages continuous dynamical systems to design a novel denoising network for diffusion models that is more parameter-efficient, exhibits faster convergence, and demonstrates increased noise robustness. Experimenting with Denoising Diffusion Probabilistic Models (DDPMs), our framework operates with approximately a quarter of the parameters, and $\sim$ 30\% of the Floating Point Operations (FLOPs) compared to standard U-Nets in DDPMs. Furthermore, our model is notably faster in inference than the baseline when measured in fair and equal conditions. We also provide a mathematical intuition as to why our proposed reverse process is faster as well as a mathematical discussion of the empirical tradeoffs in the denoising downstream task. Finally, we argue that our method is compatible with existing performance enhancement techniques, enabling further improvements in efficiency, quality, and speed.
The adaptive processing of structured data is a long-standing research topic in machine learning that investigates how to automatically learn a mapping from a structured input to outputs of various nature. Recently, there has been an increasing interest in the adaptive processing of graphs, which led to the development of different neural network-based methodologies. In this thesis, we take a different route and develop a Bayesian Deep Learning framework for graph learning. The dissertation begins with a review of the principles over which most of the methods in the field are built, followed by a study on graph classification reproducibility issues. We then proceed to bridge the basic ideas of deep learning for graphs with the Bayesian world, by building our deep architectures in an incremental fashion. This framework allows us to consider graphs with discrete and continuous edge features, producing unsupervised embeddings rich enough to reach the state of the art on several classification tasks. Our approach is also amenable to a Bayesian nonparametric extension that automatizes the choice of almost all model's hyper-parameters. Two real-world applications demonstrate the efficacy of deep learning for graphs. The first concerns the prediction of information-theoretic quantities for molecular simulations with supervised neural models. After that, we exploit our Bayesian models to solve a malware-classification task while being robust to intra-procedural code obfuscation techniques. We conclude the dissertation with an attempt to blend the best of the neural and Bayesian worlds together. The resulting hybrid model is able to predict multimodal distributions conditioned on input graphs, with the consequent ability to model stochasticity and uncertainty better than most works. Overall, we aim to provide a Bayesian perspective into the articulated research field of deep learning for graphs.
Contrastive learning models have achieved great success in unsupervised visual representation learning, which maximize the similarities between feature representations of different views of the same image, while minimize the similarities between feature representations of views of different images. In text summarization, the output summary is a shorter form of the input document and they have similar meanings. In this paper, we propose a contrastive learning model for supervised abstractive text summarization, where we view a document, its gold summary and its model generated summaries as different views of the same mean representation and maximize the similarities between them during training. We improve over a strong sequence-to-sequence text generation model (i.e., BART) on three different summarization datasets. Human evaluation also shows that our model achieves better faithfulness ratings compared to its counterpart without contrastive objectives.
Embedding entities and relations into a continuous multi-dimensional vector space have become the dominant method for knowledge graph embedding in representation learning. However, most existing models ignore to represent hierarchical knowledge, such as the similarities and dissimilarities of entities in one domain. We proposed to learn a Domain Representations over existing knowledge graph embedding models, such that entities that have similar attributes are organized into the same domain. Such hierarchical knowledge of domains can give further evidence in link prediction. Experimental results show that domain embeddings give a significant improvement over the most recent state-of-art baseline knowledge graph embedding models.
Benefit from the quick development of deep learning techniques, salient object detection has achieved remarkable progresses recently. However, there still exists following two major challenges that hinder its application in embedded devices, low resolution output and heavy model weight. To this end, this paper presents an accurate yet compact deep network for efficient salient object detection. More specifically, given a coarse saliency prediction in the deepest layer, we first employ residual learning to learn side-output residual features for saliency refinement, which can be achieved with very limited convolutional parameters while keep accuracy. Secondly, we further propose reverse attention to guide such side-output residual learning in a top-down manner. By erasing the current predicted salient regions from side-output features, the network can eventually explore the missing object parts and details which results in high resolution and accuracy. Experiments on six benchmark datasets demonstrate that the proposed approach compares favorably against state-of-the-art methods, and with advantages in terms of simplicity, efficiency (45 FPS) and model size (81 MB).
Deep neural network architectures have traditionally been designed and explored with human expertise in a long-lasting trial-and-error process. This process requires huge amount of time, expertise, and resources. To address this tedious problem, we propose a novel algorithm to optimally find hyperparameters of a deep network architecture automatically. We specifically focus on designing neural architectures for medical image segmentation task. Our proposed method is based on a policy gradient reinforcement learning for which the reward function is assigned a segmentation evaluation utility (i.e., dice index). We show the efficacy of the proposed method with its low computational cost in comparison with the state-of-the-art medical image segmentation networks. We also present a new architecture design, a densely connected encoder-decoder CNN, as a strong baseline architecture to apply the proposed hyperparameter search algorithm. We apply the proposed algorithm to each layer of the baseline architectures. As an application, we train the proposed system on cine cardiac MR images from Automated Cardiac Diagnosis Challenge (ACDC) MICCAI 2017. Starting from a baseline segmentation architecture, the resulting network architecture obtains the state-of-the-art results in accuracy without performing any trial-and-error based architecture design approaches or close supervision of the hyperparameters changes.