One of the most important aspects of autonomous systems is safety. This includes ensuring safe human-robot and safe robot-environment interaction when autonomously performing complex tasks or in collaborative scenarios. Although several methods have been introduced to tackle this, most are unsuitable for real-time applications and require carefully hand-crafted obstacle descriptions. In this work, we propose a method combining high-frequency and real-time self and environment collision avoidance of a robotic manipulator with low-frequency, multimodal, and high-resolution environmental perceptions accumulated in a digital twin system. Our method is based on geometric primitives, so-called primitive skeletons. These, in turn, are information-compressed and real-time compatible digital representations of the robot's body and environment, automatically generated from ultra-realistic virtual replicas of the real world provided by the digital twin. Our approach is a key enabler for closing the loop between environment perception and robot control by providing the millisecond real-time control stage with a current and accurate world description, empowering it to react to environmental changes. We evaluate our whole-body collision avoidance on a 9-DOFs robot system through five experiments, demonstrating the functionality and efficiency of our framework.
The large number of sensors and actuators that make up the Internet of Things obliges these systems to use diverse technologies and protocols. This means that IoT networks are more heterogeneous than traditional networks. This gives rise to new challenges in cybersecurity to protect these systems and devices which are characterized by being connected continuously to the Internet. Intrusion detection systems (IDS) are used to protect IoT systems from the various anomalies and attacks at the network level. Intrusion Detection Systems (IDS) can be improved through machine learning techniques. Our work focuses on creating classification models that can feed an IDS using a dataset containing frames under attacks of an IoT system that uses the MQTT protocol. We have addressed two types of method for classifying the attacks, ensemble methods and deep learning models, more specifically recurrent networks with very satisfactory results.
In safety-critical domains like automated driving (AD), errors by the object detector may endanger pedestrians and other vulnerable road users (VRU). As common evaluation metrics are not an adequate safety indicator, recent works employ approaches to identify safety-critical VRU and back-annotate the risk to the object detector. However, those approaches do not consider the safety factor in the deep neural network (DNN) training process. Thus, state-of-the-art DNN penalizes all misdetections equally irrespective of their criticality. Subsequently, to mitigate the occurrence of critical failure cases, i.e., false negatives, a safety-aware training strategy might be required to enhance the detection performance for critical pedestrians. In this paper, we propose a novel safety-aware loss variation that leverages the estimated per-pedestrian criticality scores during training. We exploit the reachability set-based time-to-collision (TTC-RSB) metric from the motion domain along with distance information to account for the worst-case threat quantifying the criticality. Our evaluation results using RetinaNet and FCOS on the nuScenes dataset demonstrate that training the models with our safety-aware loss function mitigates the misdetection of critical pedestrians without sacrificing performance for the general case, i.e., pedestrians outside the safety-critical zone.
To maintain full autonomy, autonomous robotic systems must have the ability to self-repair. Self-repairing via compensatory mechanisms appears in nature: for example, some fish can lose even 76% of their propulsive surface without loss of thrust by altering stroke mechanics. However, direct transference of these alterations from an organism to a robotic flapping propulsor may not be optimal due to irrelevant evolutionary pressures. We instead seek to determine what alterations to stroke mechanics are optimal for a damaged robotic system via artificial evolution. To determine whether natural and machine-learned optima differ, we employ a cyber-physical system using a Covariance Matrix Adaptation Evolutionary Strategy to seek the most efficient trajectory for a given force. We implement an online optimization with hardware-in-the-loop, performing experimental function evaluations with an actuated flexible flat plate. To recoup thrust production following partial amputation, the most efficient learned strategy was to increase amplitude, increase frequency, increase the amplitude of angle of attack, and phase shift the angle of attack by approximately 110 degrees. In fish, only an amplitude increase is reported by majority in the literature. To recoup side-force production, a more challenging optimization landscape is encountered. Nesting of optimal angle of attack traces is found in the resultant-based reference frame, but no clear trend in amplitude or frequency are exhibited -- in contrast to the increase in frequency reported in insect literature. These results suggest that how mechanical flapping propulsors most efficiently adjust to damage of a flapping propulsor may not align with natural swimmers and flyers.
Understanding the importance of the inputs on the output is useful across many tasks. This work provides an information-theoretic framework to analyse the influence of inputs for text classification tasks. Natural language processing (NLP) tasks take either a single element input or multiple element inputs to predict an output variable, where an element is a block of text. Each text element has two components: an associated semantic meaning and a linguistic realization. Multiple-choice reading comprehension (MCRC) and sentiment classification (SC) are selected to showcase the framework. For MCRC, it is found that the context influence on the output compared to the question influence reduces on more challenging datasets. In particular, more challenging contexts allow a greater variation in complexity of questions. Hence, test creators need to carefully consider the choice of the context when designing multiple-choice questions for assessment. For SC, it is found the semantic meaning of the input text dominates (above 80\% for all datasets considered) compared to its linguistic realisation when determining the sentiment. The framework is made available at: //github.com/WangLuran/nlp-element-influence
The hybridisation of robot-assisted gait training and functional electrical stimulation (FES) can provide numerous physiological benefits to neurological patients. However, the design of an effective hybrid controller poses significant challenges. In this over-actuated system, it is extremely difficult to find the right balance between robotic assistance and FES that will provide personalised assistance, prevent muscle fatigue and encourage the patient's active participation in order to accelerate recovery. In this paper, we present an adaptive hybrid robot-FES controller to do this and enable the triadic collaboration between the patient, the robot and FES. A patient-driven controller is designed where the voluntary movement of the patient is prioritised and assistance is provided using FES and the robot in a hierarchical order depending on the patient's performance and their muscles' fitness. The performance of this hybrid adaptive controller is tested in simulation and on one healthy subject. Our results indicate an increase in tracking performance with lower overall assistance, and less muscle fatigue when the hybrid adaptive controller is used, compared to its non adaptive equivalent. This suggests that our hybrid adaptive controller may be able to adapt to the behaviour of the user to provide assistance as needed and prevent the early termination of physical therapy due to muscle fatigue.
Accurate obstacle identification represents a fundamental challenge within the scope of near-field perception for autonomous driving. Conventionally, fisheye cameras are frequently employed for comprehensive surround-view perception, including rear-view obstacle localization. However, the performance of such cameras can significantly deteriorate in low-light conditions, during nighttime, or when subjected to intense sun glare. Conversely, cost-effective sensors like ultrasonic sensors remain largely unaffected under these conditions. Therefore, we present, to our knowledge, the first end-to-end multimodal fusion model tailored for efficient obstacle perception in a bird's-eye-view (BEV) perspective, utilizing fisheye cameras and ultrasonic sensors. Initially, ResNeXt-50 is employed as a set of unimodal encoders to extract features specific to each modality. Subsequently, the feature space associated with the visible spectrum undergoes transformation into BEV. The fusion of these two modalities is facilitated via concatenation. At the same time, the ultrasonic spectrum-based unimodal feature maps pass through content-aware dilated convolution, applied to mitigate the sensor misalignment between two sensors in the fused feature space. Finally, the fused features are utilized by a two-stage semantic occupancy decoder to generate grid-wise predictions for precise obstacle perception. We conduct a systematic investigation to determine the optimal strategy for multimodal fusion of both sensors. We provide insights into our dataset creation procedures, annotation guidelines, and perform a thorough data analysis to ensure adequate coverage of all scenarios. When applied to our dataset, the experimental results underscore the robustness and effectiveness of our proposed multimodal fusion approach.
Deep reinforcement learning algorithms (DRL) are increasingly being used in safety-critical systems. Ensuring the safety of DRL agents is a critical concern in such contexts. However, relying solely on testing is not sufficient to ensure safety as it does not offer guarantees. Building safety monitors is one solution to alleviate this challenge. This paper proposes SMARLA, a machine learning-based safety monitoring approach designed for DRL agents. For practical reasons, SMARLA is designed to be black-box (as it does not require access to the internals or training data of the agent) and leverages state abstraction to reduce the state space and thus facilitate the learning of safety violation prediction models from agent's states. We validated SMARLA on two well-known RL case studies. Empirical analysis reveals that SMARLA achieves accurate violation prediction with a low false positive rate, and can predict safety violations at an early stage, approximately halfway through the agent's execution before violations occur.
Tactile sensing is significant for robotics since it can obtain physical contact information during manipulation. To capture multimodal contact information within a compact framework, we designed a novel sensor called ViTacTip, which seamlessly integrates both tactile and visual perception capabilities into a single, integrated sensor unit. ViTacTip features a transparent skin to capture fine features of objects during contact, which can be known as the see-through-skin mechanism. In the meantime, the biomimetic tips embedded in ViTacTip can amplify touch motions during tactile perception. For comparative analysis, we also fabricated a ViTac sensor devoid of biomimetic tips, as well as a TacTip sensor with opaque skin. Furthermore, we develop a Generative Adversarial Network (GAN)-based approach for modality switching between different perception modes, effectively alternating the emphasis between vision and tactile perception modes. We conducted a performance evaluation of the proposed sensor across three distinct tasks: i) grating identification, ii) pose regression, and iii) contact localization and force estimation. In the grating identification task, ViTacTip demonstrated an accuracy of 99.72%, surpassing TacTip, which achieved 94.60%. It also exhibited superior performance in both pose and force estimation tasks with the minimum error of 0.08mm and 0.03N, respectively, in contrast to ViTac's 0.12mm and 0.15N. Results indicate that ViTacTip outperforms single-modality sensors.
Robotic collectives for military and disaster response applications require coalition formation algorithms to partition robots into appropriate task teams. Collectives' missions will often incorporate tasks that require multiple high-level robot behaviors or services, which coalition formation must accommodate. The highly dynamic and unstructured application domains also necessitate that coalition formation algorithms produce near optimal solutions (i.e., >95% utility) in near real-time (i.e., <5 minutes) with very large collectives (i.e., hundreds of robots). No previous coalition formation algorithm satisfies these requirements. An initial evaluation found that traditional auction-based algorithms' runtimes are too long, even though the centralized simulator incorporated ideal conditions unlikely to occur in real-world deployments (i.e., synchronization across robots and perfect, instantaneous communication). The hedonic game-based GRAPE algorithm can produce solutions in near real-time, but cannot be applied to multiple service collectives. This manuscript integrates GRAPE and a services model, producing GRAPE-S and Pair-GRAPE-S. These algorithms and two auction baselines were evaluated using a centralized simulator with up to 1000 robots, and via the largest distributed coalition formation simulated evaluation to date, with up to 500 robots. The evaluations demonstrate that auctions transfer poorly to distributed collectives, resulting in excessive runtimes and low utility solutions. GRAPE-S satisfies the target domains' coalition formation requirements, producing near optimal solutions in near real-time, and Pair-GRAPE-S more than satisfies the domain requirements, producing optimal solutions in near real-time. GRAPE-S and Pair-GRAPE-S are the first algorithms demonstrated to support near real-time coalition formation for very large, distributed collectives with multiple services.
Face recognition technology has advanced significantly in recent years due largely to the availability of large and increasingly complex training datasets for use in deep learning models. These datasets, however, typically comprise images scraped from news sites or social media platforms and, therefore, have limited utility in more advanced security, forensics, and military applications. These applications require lower resolution, longer ranges, and elevated viewpoints. To meet these critical needs, we collected and curated the first and second subsets of a large multi-modal biometric dataset designed for use in the research and development (R&D) of biometric recognition technologies under extremely challenging conditions. Thus far, the dataset includes more than 350,000 still images and over 1,300 hours of video footage of approximately 1,000 subjects. To collect this data, we used Nikon DSLR cameras, a variety of commercial surveillance cameras, specialized long-rage R&D cameras, and Group 1 and Group 2 UAV platforms. The goal is to support the development of algorithms capable of accurately recognizing people at ranges up to 1,000 m and from high angles of elevation. These advances will include improvements to the state of the art in face recognition and will support new research in the area of whole-body recognition using methods based on gait and anthropometry. This paper describes methods used to collect and curate the dataset, and the dataset's characteristics at the current stage.