亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In an effort to provide regional decision support for the public healthcare, we design a data-driven compartment-based model of COVID-19 in Sweden. From national hospital statistics we derive parameter priors, and we develop linear filtering techniques to drive the simulations given data in the form of daily healthcare demands. We additionally propose a posterior marginal estimator which provides for an improved temporal resolution of the reproduction number estimate as well as supports robustness checks via a parametric bootstrap procedure. From our computational approach we obtain a Bayesian model of predictive value which provides important insight into the progression of the disease, including estimates of the effective reproduction number, the infection fatality rate, and the regional-level immunity. We successfully validate our posterior model against several different sources, including outputs from extensive screening programs. Since our required data in comparison is easy and non-sensitive to collect, we argue that our approach is particularly promising as a tool to support monitoring and decisions within public health.

相關內容

In the presented work, we propose to apply the framework of graph neural networks (GNNs) to predict the dynamics of a rolling element bearing. This approach offers generalizability and interpretability, having the potential for scalable use in real-time operational digital twin systems for monitoring the health state of rotating machines. By representing the bearing's components as nodes in a graph, the GNN can effectively model the complex relationships and interactions among them. We utilize a dynamic spring-mass-damper model of a bearing to generate the training data for the GNN. In this model, discrete masses represent bearing components such as rolling elements, inner raceways, and outer raceways, while a Hertzian contact model is employed to calculate the forces between these components. We evaluate the learning and generalization capabilities of the proposed GNN framework by testing different bearing configurations that deviate from the training configurations. Through this approach, we demonstrate the effectiveness of the GNN-based method in accurately predicting the dynamics of rolling element bearings, highlighting its potential for real-time health monitoring of rotating machinery.

Severe acute respiratory disease SARS-CoV-2 has had a found impact on public health systems and healthcare emergency response especially with respect to making decisions on the most effective measures to be taken at any given time. As demonstrated throughout the last three years with COVID-19, the prediction of the number of positive cases can be an effective way to facilitate decision-making. However, the limited availability of data and the highly dynamic and uncertain nature of the virus transmissibility makes this task very challenging. Aiming at investigating these challenges and in order to address this problem, this work studies data-driven (learning, statistical) methods for incrementally training models to adapt to these nonstationary conditions. An extensive empirical study is conducted to examine various characteristics, such as, performance analysis on a per virus wave basis, feature extraction, "lookback" window size, memory size, all for next-, 7-, and 14-day forecasting tasks. We demonstrate that the incremental learning framework can successfully address the aforementioned challenges and perform well during outbreaks, providing accurate predictions.

Background: The COVID-19 pandemic has affected our society and human well-being in various ways. In this study, we investigate how the pandemic has influenced people's emotions and psychological states compared to a pre-pandemic period using real-world data from social media. Method: We collected Reddit social media data from 2019 (pre-pandemic) and 2020 (pandemic) from the subreddits communities associated with eight universities. We applied the pre-trained Robustly Optimized BERT pre-training approach (RoBERTa) to learn text embedding from the Reddit messages, and leveraged the relational information among posted messages to train a graph attention network (GAT) for sentiment classification. Finally, we applied model stacking to combine the prediction probabilities from RoBERTa and GAT to yield the final classification on sentiment. With the model-predicted sentiment labels on the collected data, we used a generalized linear mixed-effects model to estimate the effects of pandemic and in-person teaching during the pandemic on sentiment. Results: The results suggest that the odds of negative sentiments in 2020 (pandemic) were 25.7% higher than the odds in 2019 (pre-pandemic) with a $p$-value $<0.001$; and the odds of negative sentiments associated in-person learning were 48.3% higher than with remote learning in 2020 with a $p$-value of 0.029. Conclusions: Our study results are consistent with the findings in the literature on the negative impacts of the pandemic on people's emotions and psychological states. Our study contributes to the growing real-world evidence on the various negative impacts of the pandemic on our society; it also provides a good example of using both ML techniques and statistical modeling and inference to make better use of real-world data.

Scarcity of health care resources could result in the unavoidable consequence of rationing. For example, ventilators are often limited in supply, especially during public health emergencies or in resource-constrained health care settings, such as amid the pandemic of COVID-19. Currently, there is no universally accepted standard for health care resource allocation protocols, resulting in different governments prioritizing patients based on various criteria and heuristic-based protocols. In this study, we investigate the use of reinforcement learning for critical care resource allocation policy optimization to fairly and effectively ration resources. We propose a transformer-based deep Q-network to integrate the disease progression of individual patients and the interaction effects among patients during the critical care resource allocation. We aim to improve both fairness of allocation and overall patient outcomes. Our experiments demonstrate that our method significantly reduces excess deaths and achieves a more equitable distribution under different levels of ventilator shortage, when compared to existing severity-based and comorbidity-based methods in use by different governments. Our source code is included in the supplement and will be released on Github upon publication.

Causal relationship recognition is a fundamental operation in neural networks aimed at learning behavior, action planning, and inferring external world dynamics. This operation is particularly crucial for reinforcement learning (RL). In the context of spiking neural networks (SNNs), events are represented as spikes emitted by network neurons or input nodes. Detecting causal relationships within these events is essential for effective RL implementation. This research paper presents a novel approach to realize causal relationship recognition using a simple spiking binary neuron. The proposed method leverages specially designed synaptic plasticity rules, which are both straightforward and efficient. Notably, our approach accounts for the temporal aspects of detected causal links and accommodates the representation of spiking signals as single spikes or tight spike sequences (bursts), as observed in biological brains. Furthermore, this study places a strong emphasis on the hardware-friendliness of the proposed models, ensuring their efficient implementation on modern and future neuroprocessors. Being compared with precise machine learning techniques, such as decision tree algorithms and convolutional neural networks, our neuron demonstrates satisfactory accuracy despite its simplicity. In conclusion, we introduce a multi-neuron structure capable of operating in more complex environments with enhanced accuracy, making it a promising candidate for the advancement of RL applications in SNNs.

What is learned by sophisticated neural network agents such as AlphaZero? This question is of both scientific and practical interest. If the representations of strong neural networks bear no resemblance to human concepts, our ability to understand faithful explanations of their decisions will be restricted, ultimately limiting what we can achieve with neural network interpretability. In this work we provide evidence that human knowledge is acquired by the AlphaZero neural network as it trains on the game of chess. By probing for a broad range of human chess concepts we show when and where these concepts are represented in the AlphaZero network. We also provide a behavioural analysis focusing on opening play, including qualitative analysis from chess Grandmaster Vladimir Kramnik. Finally, we carry out a preliminary investigation looking at the low-level details of AlphaZero's representations, and make the resulting behavioural and representational analyses available online.

In contrast to batch learning where all training data is available at once, continual learning represents a family of methods that accumulate knowledge and learn continuously with data available in sequential order. Similar to the human learning process with the ability of learning, fusing, and accumulating new knowledge coming at different time steps, continual learning is considered to have high practical significance. Hence, continual learning has been studied in various artificial intelligence tasks. In this paper, we present a comprehensive review of the recent progress of continual learning in computer vision. In particular, the works are grouped by their representative techniques, including regularization, knowledge distillation, memory, generative replay, parameter isolation, and a combination of the above techniques. For each category of these techniques, both its characteristics and applications in computer vision are presented. At the end of this overview, several subareas, where continuous knowledge accumulation is potentially helpful while continual learning has not been well studied, are discussed.

Due to their increasing spread, confidence in neural network predictions became more and more important. However, basic neural networks do not deliver certainty estimates or suffer from over or under confidence. Many researchers have been working on understanding and quantifying uncertainty in a neural network's prediction. As a result, different types and sources of uncertainty have been identified and a variety of approaches to measure and quantify uncertainty in neural networks have been proposed. This work gives a comprehensive overview of uncertainty estimation in neural networks, reviews recent advances in the field, highlights current challenges, and identifies potential research opportunities. It is intended to give anyone interested in uncertainty estimation in neural networks a broad overview and introduction, without presupposing prior knowledge in this field. A comprehensive introduction to the most crucial sources of uncertainty is given and their separation into reducible model uncertainty and not reducible data uncertainty is presented. The modeling of these uncertainties based on deterministic neural networks, Bayesian neural networks, ensemble of neural networks, and test-time data augmentation approaches is introduced and different branches of these fields as well as the latest developments are discussed. For a practical application, we discuss different measures of uncertainty, approaches for the calibration of neural networks and give an overview of existing baselines and implementations. Different examples from the wide spectrum of challenges in different fields give an idea of the needs and challenges regarding uncertainties in practical applications. Additionally, the practical limitations of current methods for mission- and safety-critical real world applications are discussed and an outlook on the next steps towards a broader usage of such methods is given.

Deep neural networks have revolutionized many machine learning tasks in power systems, ranging from pattern recognition to signal processing. The data in these tasks is typically represented in Euclidean domains. Nevertheless, there is an increasing number of applications in power systems, where data are collected from non-Euclidean domains and represented as the graph-structured data with high dimensional features and interdependency among nodes. The complexity of graph-structured data has brought significant challenges to the existing deep neural networks defined in Euclidean domains. Recently, many studies on extending deep neural networks for graph-structured data in power systems have emerged. In this paper, a comprehensive overview of graph neural networks (GNNs) in power systems is proposed. Specifically, several classical paradigms of GNNs structures (e.g., graph convolutional networks, graph recurrent neural networks, graph attention networks, graph generative networks, spatial-temporal graph convolutional networks, and hybrid forms of GNNs) are summarized, and key applications in power systems such as fault diagnosis, power prediction, power flow calculation, and data generation are reviewed in detail. Furthermore, main issues and some research trends about the applications of GNNs in power systems are discussed.

Over the past few years, we have seen fundamental breakthroughs in core problems in machine learning, largely driven by advances in deep neural networks. At the same time, the amount of data collected in a wide array of scientific domains is dramatically increasing in both size and complexity. Taken together, this suggests many exciting opportunities for deep learning applications in scientific settings. But a significant challenge to this is simply knowing where to start. The sheer breadth and diversity of different deep learning techniques makes it difficult to determine what scientific problems might be most amenable to these methods, or which specific combination of methods might offer the most promising first approach. In this survey, we focus on addressing this central issue, providing an overview of many widely used deep learning models, spanning visual, sequential and graph structured data, associated tasks and different training methods, along with techniques to use deep learning with less data and better interpret these complex models --- two central considerations for many scientific use cases. We also include overviews of the full design process, implementation tips, and links to a plethora of tutorials, research summaries and open-sourced deep learning pipelines and pretrained models, developed by the community. We hope that this survey will help accelerate the use of deep learning across different scientific domains.

北京阿比特科技有限公司