亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Solute transport in fluid-particle systems is a fundamental process in numerous scientific and engineering disciplines. The simulation of it necessitates the consideration of solid particles with intricate shapes and sizes. To address this challenge, this study proposes the Random-Walk Metaball-Imaging Discrete Element Lattice Boltzmann Method (RW-MI-DELBM). In this model, we reconstruct particle geometries with the Metaball-Imaging algorithm, capture the particle behavior using the Discrete Element Method (DEM), simulate fluid behavior by the Lattice Boltzmann Method (LBM), and represent solute behavior through the Random Walk Method (RWM). Through the integration of these techniques with specially designed boundary conditions, we achieve to simulate the solute transport in fluid-particle systems comprising complex particle morphologies. Thorough validations, including analytical soluutions and experiments, are performed to assess the robustness and accuracy of this framework. The results demonstrate that the proposed framework can accurately capture the complex dynamics of solute transport under strict mass conservation. In particular, an investigation is carried out to assess the influence of particle morphologies on solute transport in a 3D oscillator, with a focus on identifying correlations between shape features and dispersion coefficients. Notably, all selected shape features exhibited strong correlations with the dispersion coefficient, indicating the significant influence of particle shapes on transport phenomena. However, due to the complexity of the relationship and the limited number of simulations, no clear patterns could be observed. Further comprehensive analyses incorporating a broader range of shape features and varying conditions are necessary to fully comprehend their collective influence on the dispersion coefficient.

相關內容

Recently a line of researches has delved the use of graph neural networks (GNNs) for decentralized control in swarm robotics. However, it has been observed that relying solely on the states of immediate neighbors is insufficient to imitate a centralized control policy. To address this limitation, prior studies proposed incorporating $L$-hop delayed states into the computation. While this approach shows promise, it can lead to a lack of consensus among distant flock members and the formation of small clusters, consequently resulting in the failure of cohesive flocking behaviors. Instead, our approach leverages spatiotemporal GNN, named STGNN that encompasses both spatial and temporal expansions. The spatial expansion collects delayed states from distant neighbors, while the temporal expansion incorporates previous states from immediate neighbors. The broader and more comprehensive information gathered from both expansions results in more effective and accurate predictions. We develop an expert algorithm for controlling a swarm of robots and employ imitation learning to train our decentralized STGNN model based on the expert algorithm. We simulate the proposed STGNN approach in various settings, demonstrating its decentralized capacity to emulate the global expert algorithm. Further, we implemented our approach to achieve cohesive flocking, leader following and obstacle avoidance by a group of Crazyflie drones. The performance of STGNN underscores its potential as an effective and reliable approach for achieving cohesive flocking, leader following and obstacle avoidance tasks.

Control barrier functions (CBFs) provide a simple yet effective way for safe control synthesis. Recently, work has been done using differentiable optimization based methods to systematically construct CBFs for static obstacle avoidance tasks between geometric shapes. In this work, we extend the application of differentiable optimization based CBFs to perform dynamic obstacle avoidance tasks. We show that by using the time-varying CBF (TVCBF) formulation, we can perform obstacle avoidance for dynamic geometric obstacles. Additionally, we show how to alter the TVCBF constraint to consider measurement noise and actuation limits. To demonstrate the efficacy of our proposed approach, we first compare its performance with a model predictive control based method on a simulated dynamic obstacle avoidance task with non-ellipsoidal obstacles. Then, we demonstrate the performance of our proposed approach in experimental studies using a 7-degree-of-freedom Franka Research 3 robotic manipulator.

Cell-free (CF) extremely large-scale multiple-input multiple-output (XL-MIMO) is regarded as a promising technology for enabling future wireless communication systems. Significant attention has been generated by its considerable advantages in augmenting degrees of freedom. In this paper, we first investigate a CF XL-MIMO system with base stations equipped with XL-MIMO panels under a dynamic environment. Then, we propose an innovative multi-agent reinforcement learning (MARL)-based power control algorithm that incorporates predictive management and distributed optimization architecture, which provides a dynamic strategy for addressing high-dimension signal processing problems. Specifically, we compare various MARL-based algorithms, which shows that the proposed MARL-based algorithm effectively strikes a balance between spectral efficiency (SE) performance and convergence time. Moreover, we consider a double-layer power control architecture based on the large-scale fading coefficients between antennas to suppress interference within dynamic systems. Compared to the single-layer architecture, the results obtained unveil that the proposed double-layer architecture has a nearly24% SE performance improvement, especially with massive antennas and smaller antenna spacing.

Parameter inference for dynamical models of (bio)physical systems remains a challenging problem. Intractable gradients, high-dimensional spaces, and non-linear model functions are typically problematic without large computational budgets. A recent body of work in that area has focused on Bayesian inference methods, which consider parameters under their statistical distributions and therefore, do not derive point estimates of optimal parameter values. Here we propose a new metaheuristic that drives dimensionality reductions from feature-informed transformations (DR-FFIT) to address these bottlenecks. DR-FFIT implements an efficient sampling strategy that facilitates a gradient-free parameter search in high-dimensional spaces. We use artificial neural networks to obtain differentiable proxies for the model's features of interest. The resulting gradients enable the estimation of a local active subspace of the model within a defined sampling region. This approach enables efficient dimensionality reductions of highly non-linear search spaces at a low computational cost. Our test data show that DR-FFIT boosts the performances of random-search and simulated-annealing against well-established metaheuristics, and improves the goodness-of-fit of the model, all within contained run-time costs.

Quadratic Unconstrained Binary Optimization (QUBO) is a generic technique to model various NP-hard combinatorial optimization problems in the form of binary variables. The Hamiltonian function is often used to formulate QUBO problems where it is used as the objective function in the context of optimization. Recently, PI-GNN, a generic scalable framework, has been proposed to address the Combinatorial Optimization (CO) problems over graphs based on a simple Graph Neural Network (GNN) architecture. Their novel contribution was a generic QUBO-formulated Hamiltonian-inspired loss function that was optimized using GNN. In this study, we address a crucial issue related to the aforementioned setup especially observed in denser graphs. The reinforcement learning-based paradigm has also been widely used to address numerous CO problems. Here we also formulate and empirically evaluate the compatibility of the QUBO-formulated Hamiltonian as the generic reward function in the Reinforcement Learning paradigm to directly integrate the actual node projection status during training as the form of rewards. In our experiments, we observed up to 44% improvement in the RL-based setup compared to the PI-GNN algorithm. Our implementation can be found in //github.com/rizveeredwan/learning-graph-structure.

Code generation is to automatically generate source code conforming to a given programming specification, which has received extensive attention especially with the development of large language models (LLMs). Due to the inherent difficulty of code generation, the code generated by LLMs may be also not aligned with the specification. To improve the perfor mance of LLMs in code generation, some Chain of Thought (CoT) techniques have been proposed to guide LLMs for programming understanding before code generation. However, they are still hard to figure out complicated programming logic according to the (concise) specification, leadingto unsatisfactory code generation performance. In this work, we propose the first test-case-driven CoT technique, called TCoT, to further enhance the ability of LLMs in code generation. It understands the programming specification from the novel perspective of test cases, which is aligned with human practice by using examples to understand complicated problems. Due to the existence of the expected output specified in a test case, TCoT can instantly check the correctness of the programming understanding and then refine it to be as correct as possible before code generation. In this way, it is more likely to generate correct code. Our evaluation on 6 datasets and 14 baselines demonstrates the effectiveness of TCoT. For example, TCoT improves ChatGPT by 13.93%~69.44% in terms of Pass@1 (measuring the ratio of programming problems for which the generated code passes all test cases), and outperforms the existing CoT technique with the improvement of 12.14%~53.72% in terms of Pass@1.

An emerging direction of quantum computing is to establish meaningful quantum applications in various fields of artificial intelligence, including natural language processing (NLP). Although some efforts based on syntactic analysis have opened the door to research in Quantum NLP (QNLP), limitations such as heavy syntactic preprocessing and syntax-dependent network architecture make them impracticable on larger and real-world data sets. In this paper, we propose a new simple network architecture, called the quantum self-attention neural network (QSANN), which can compensate for these limitations. Specifically, we introduce the self-attention mechanism into quantum neural networks and then utilize a Gaussian projected quantum self-attention serving as a sensible quantum version of self-attention. As a result, QSANN is effective and scalable on larger data sets and has the desirable property of being implementable on near-term quantum devices. In particular, our QSANN outperforms the best existing QNLP model based on syntactic analysis as well as a simple classical self-attention neural network in numerical experiments of text classification tasks on public data sets. We further show that our method exhibits robustness to low-level quantum noises and showcases resilience to quantum neural network architectures.

Reconfigurable intelligent surface (RIS) is a promising candidate technology of the upcoming Sixth Generation (6G) communication system for its ability to provide unprecedented spectral and energy efficiency increment through passive beamforming. However, it is challenging to obtain instantaneous channel state information (I-CSI) for RIS, which obliges us to use statistical channel state information (S-CSI) to achieve passive beamforming. In this paper, RIS-aided multiple-input single-output (MISO) multi-user downlink communication system with correlated channels is investigated. Then, we formulate the problem of joint beamforming design at the AP and RIS to maximize the sum ergodic spectral efficiency (ESE) of all users to improve the network capacity. Since it is too hard to compute sum ESE, an ESE approximation is adopted to reformulate the problem into a more tractable form. Then, we present two joint beamforming algorithms, namely the singular value decomposition-gradient descent (SVD-GD) algorithm and the fractional programming-gradient descent (FP-GD) algorithm. Simulation results show the effectiveness of our proposed algorithms and validate that 2-bits quantizer is enough for RIS phase shifts implementation.

Current speaker recognition systems primarily rely on supervised approaches, constrained by the scale of labeled datasets. To boost the system performance, researchers leverage large pretrained models such as WavLM to transfer learned high-level features to the downstream speaker recognition task. However, this approach introduces extra parameters as the pretrained model remains in the inference stage. Another group of researchers directly apply self-supervised methods such as DINO to speaker embedding learning, yet they have not explored its potential on large-scale in-the-wild datasets. In this paper, we present the effectiveness of DINO training on the large-scale WenetSpeech dataset and its transferability in enhancing the supervised system performance on the CNCeleb dataset. Additionally, we introduce a confidence-based data filtering algorithm to remove unreliable data from the pretraining dataset, leading to better performance with less training data. The associated pretrained models, confidence files, pretraining and finetuning scripts will be made available in the Wespeaker toolkit.

The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.

北京阿比特科技有限公司