亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Automated mechanism design (AMD) uses computational methods for mechanism design. Differentiable economics is a form of AMD that uses deep learning to learn mechanism designs and has enabled strong progress in AMD in recent years. Nevertheless, a major open problem has been to learn multi-bidder, general, and fully strategy-proof (SP) auctions. We introduce GEneral Menu-based NETwork (GemNet), which significantly extends the menu-based approach of the single-bidder RochetNet (D\"utting et al., 2024) to the multi-bidder setting. The challenge in achieving SP is to learn bidder-independent menus that are feasible, so that the optimal menu choices for each bidder do not over-allocate items when taken together (we call this menu compatibility). GemNet penalizes the failure of menu compatibility during training, and transforms learned menus after training through price changes, by considering a set of discretized bidder values and reasoning about Lipschitz smoothness to guarantee menu compatibility on the entire value space. This approach is general, leaving trained menus that already satisfy menu compatibility undisturbed and reducing to RochetNet for a single bidder. Mixed-integer linear programs are used for menu transforms, and through a number of optimizations enabled by deep learning, including adaptive grids and methods to skip menu elements, we scale to large auction design problems. GemNet learns auctions with better revenue than affine maximization methods, achieves exact SP whereas previous general multi-bidder methods are approximately SP, and offers greatly enhanced interpretability.

相關內容

Recurrent Neural Networks (RNNs) have revolutionized many areas of machine learning, particularly in natural language and data sequence processing. Long Short-Term Memory (LSTM) has demonstrated its ability to capture long-term dependencies in sequential data. Inspired by the Kolmogorov-Arnold Networks (KANs) a promising alternatives to Multi-Layer Perceptrons (MLPs), we proposed a new neural networks architecture inspired by KAN and the LSTM, the Temporal Kolomogorov-Arnold Networks (TKANs). TKANs combined the strenght of both networks, it is composed of Recurring Kolmogorov-Arnold Networks (RKANs) Layers embedding memory management. This innovation enables us to perform multi-step time series forecasting with enhanced accuracy and efficiency. By addressing the limitations of traditional models in handling complex sequential patterns, the TKAN architecture offers significant potential for advancements in fields requiring more than one step ahead forecasting.

Alignment, endowing a pre-trained Large language model (LLM) with the ability to follow instructions, is crucial for its real-world applications. Conventional supervised fine-tuning (SFT) methods formalize it as causal language modeling typically with a cross-entropy objective, requiring a large amount of high-quality instruction-response pairs. However, the quality of widely used SFT datasets can not be guaranteed due to the high cost and intensive labor for the creation and maintenance in practice. To overcome the limitations associated with the quality of SFT datasets, we introduce a novel \textbf{p}reference-\textbf{o}riented supervised \textbf{f}ine-\textbf{t}uning approach, namely PoFT. The intuition is to boost SFT by imposing a particular preference: \textit{favoring the target model over aligned LLMs on the same SFT data.} This preference encourages the target model to predict a higher likelihood than that predicted by the aligned LLMs, incorporating assessment information on data quality (i.e., predicted likelihood by the aligned LLMs) into the training process. Extensive experiments are conducted, and the results validate the effectiveness of the proposed method. PoFT achieves stable and consistent improvements over the SFT baselines across different training datasets and base models. Moreover, we prove that PoFT can be integrated with existing SFT data filtering methods to achieve better performance, and further improved by following preference optimization procedures, such as DPO.

Instance segmentation algorithms in remote sensing are typically based on conventional methods, limiting their application to seen scenarios and closed-set predictions. In this work, we propose a novel task called zero-shot remote sensing instance segmentation, aimed at identifying aerial objects that are absent from training data. Challenges arise when classifying aerial categories with high inter-class similarity and intra-class variance. Besides, the domain gap between vision-language models' pretraining datasets and remote sensing datasets hinders the zero-shot capabilities of the pretrained model when it is directly applied to remote sensing images. To address these challenges, we propose a $\textbf{Z}$ero-Sh$\textbf{o}$t $\textbf{R}$emote Sensing $\textbf{I}$nstance Segmentation framework, dubbed $\textbf{ZoRI}$. Our approach features a discrimination-enhanced classifier that uses refined textual embeddings to increase the awareness of class disparities. Instead of direct fine-tuning, we propose a knowledge-maintained adaptation strategy that decouples semantic-related information to preserve the pretrained vision-language alignment while adjusting features to capture remote sensing domain-specific visual cues. Additionally, we introduce a prior-injected prediction with cache bank of aerial visual prototypes to supplement the semantic richness of text embeddings and seamlessly integrate aerial representations, adapting to the remote sensing domain. We establish new experimental protocols and benchmarks, and extensive experiments convincingly demonstrate that ZoRI achieves the state-of-art performance on the zero-shot remote sensing instance segmentation task. Our code is available at //github.com/HuangShiqi128/ZoRI.

Can foundation models (such as ChatGPT) clean your data? In this proposal, we demonstrate that indeed ChatGPT can assist in data cleaning by suggesting corrections for specific cells in a data table (scenario 1). However, ChatGPT may struggle with datasets it has never encountered before (e.g., local enterprise data) or when the user requires an explanation of the source of the suggested clean values. To address these issues, we developed a retrieval-based method that complements ChatGPT's power with a user-provided data lake. The data lake is first indexed, we then retrieve the top-k relevant tuples to the user's query tuple and finally leverage ChatGPT to infer the correct value (scenario 2). Nevertheless, sharing enterprise data with ChatGPT, an externally hosted model, might not be feasible for privacy reasons. To assist with this scenario, we developed a custom RoBERTa-based foundation model that can be locally deployed. By fine-tuning it on a small number of examples, it can effectively make value inferences based on the retrieved tuples (scenario 3). Our proposed system, RetClean, seamlessly supports all three scenarios and provides a user-friendly GUI that enables the VLDB audience to explore and experiment with the system.

Due to the sensitivity of data, federated learning (FL) is employed to enable distributed machine learning while safeguarding data privacy and accommodating the requirements of various devices. However, in the context of semi-decentralized federated learning (SD-FL), clients' communication and training states are dynamic. This variability arises from local training fluctuations, heterogeneous data distributions, and intermittent client participation. Most existing studies primarily focus on stable client states, neglecting the dynamic challenges present in real-world scenarios. To tackle this issue, we propose a trust-aware client scheduling mechanism (TRAIL) that assesses client states and contributions, enhancing model training efficiency through selective client participation. Our focus is on a semi-decentralized federated learning framework where edge servers and clients train a shared global model using unreliable intra-cluster model aggregation and inter-cluster model consensus. First, we develop an adaptive hidden semi-Markov model (AHSMM) to estimate clients' communication states and contributions. Next, we address a client-server association optimization problem to minimize global training loss. Using convergence analysis, we propose a greedy client scheduling algorithm. Finally, our experiments conducted on real-world datasets demonstrate that TRAIL outperforms state-of-the-art baselines, achieving an improvement of 8.7\% in test accuracy and a reduction of 15.3\% in training loss.

Texture synthesis is a fundamental problem in computer graphics that would benefit various applications. Existing methods are effective in handling 2D image textures. In contrast, many real-world textures contain meso-structure in the 3D geometry space, such as grass, leaves, and fabrics, which cannot be effectively modeled using only 2D image textures. We propose a novel texture synthesis method with Neural Radiance Fields (NeRF) to capture and synthesize textures from given multi-view images. In the proposed NeRF texture representation, a scene with fine geometric details is disentangled into the meso-structure textures and the underlying base shape. This allows textures with meso-structure to be effectively learned as latent features situated on the base shape, which are fed into a NeRF decoder trained simultaneously to represent the rich view-dependent appearance. Using this implicit representation, we can synthesize NeRF-based textures through patch matching of latent features. However, inconsistencies between the metrics of the reconstructed content space and the latent feature space may compromise the synthesis quality. To enhance matching performance, we further regularize the distribution of latent features by incorporating a clustering constraint. In addition to generating NeRF textures over a planar domain, our method can also synthesize NeRF textures over curved surfaces, which are practically useful. Experimental results and evaluations demonstrate the effectiveness of our approach.

Recent advances in General Text-to-3D (GT23D) have been significant. However, the lack of a benchmark has hindered systematic evaluation and progress due to issues in datasets and metrics: 1) The largest 3D dataset Objaverse suffers from omitted annotations, disorganization, and low-quality. 2) Existing metrics only evaluate textual-image alignment without considering the 3D-level quality. To this end, we are the first to present a comprehensive benchmark for GT23D called GT23D-Bench consisting of: 1) a 400k high-fidelity and well-organized 3D dataset that curated issues in Objaverse through a systematical annotation-organize-filter pipeline; and 2) comprehensive 3D-aware evaluation metrics which encompass 10 clearly defined metrics thoroughly accounting for multi-dimension of GT23D. Notably, GT23D-Bench features three properties: 1) Multimodal Annotations. Our dataset annotates each 3D object with 64-view depth maps, normal maps, rendered images, and coarse-to-fine captions. 2) Holistic Evaluation Dimensions. Our metrics are dissected into a) Textual-3D Alignment measures textual alignment with multi-granularity visual 3D representations; and b) 3D Visual Quality which considers texture fidelity, multi-view consistency, and geometry correctness. 3) Valuable Insights. We delve into the performance of current GT23D baselines across different evaluation dimensions and provide insightful analysis. Extensive experiments demonstrate that our annotations and metrics are aligned with human preferences.

Fully Homomorphic Encryption (FHE) is known to be extremely computationally-intensive, application-specific accelerators emerged as a powerful solution to narrow the performance gap. Nonetheless, due to the increasing complexities in FHE schemes per se and multi-scheme FHE algorithm designs in end-to-end privacy-preserving tasks, existing FHE accelerators often face the challenges of low hardware utilization rates and insufficient memory bandwidth. In this work, we present \NAME, a layered near-memory computing hierarchy tailored for multi-scheme FHE acceleration. By closely inspecting the data flow across different FHE schemes, we propose a layered near-memory computing architecture with fine-grained functional unit design to significantly enhance the utilization rates of computational resources and memory bandwidth. The experimental results illustrate that APACHE outperforms state-of-the-art ASIC FHE accelerators by 10.63x to 35.47x over a variety of application benchmarks, e.g., Lola MNIST, HELR, VSP, and HE$^{3}$DB.

Classic machine learning methods are built on the $i.i.d.$ assumption that training and testing data are independent and identically distributed. However, in real scenarios, the $i.i.d.$ assumption can hardly be satisfied, rendering the sharp drop of classic machine learning algorithms' performances under distributional shifts, which indicates the significance of investigating the Out-of-Distribution generalization problem. Out-of-Distribution (OOD) generalization problem addresses the challenging setting where the testing distribution is unknown and different from the training. This paper serves as the first effort to systematically and comprehensively discuss the OOD generalization problem, from the definition, methodology, evaluation to the implications and future directions. Firstly, we provide the formal definition of the OOD generalization problem. Secondly, existing methods are categorized into three parts based on their positions in the whole learning pipeline, namely unsupervised representation learning, supervised model learning and optimization, and typical methods for each category are discussed in detail. We then demonstrate the theoretical connections of different categories, and introduce the commonly used datasets and evaluation metrics. Finally, we summarize the whole literature and raise some future directions for OOD generalization problem. The summary of OOD generalization methods reviewed in this survey can be found at //out-of-distribution-generalization.com.

Recurrent neural nets (RNN) and convolutional neural nets (CNN) are widely used on NLP tasks to capture the long-term and local dependencies, respectively. Attention mechanisms have recently attracted enormous interest due to their highly parallelizable computation, significantly less training time, and flexibility in modeling dependencies. We propose a novel attention mechanism in which the attention between elements from input sequence(s) is directional and multi-dimensional (i.e., feature-wise). A light-weight neural net, "Directional Self-Attention Network (DiSAN)", is then proposed to learn sentence embedding, based solely on the proposed attention without any RNN/CNN structure. DiSAN is only composed of a directional self-attention with temporal order encoded, followed by a multi-dimensional attention that compresses the sequence into a vector representation. Despite its simple form, DiSAN outperforms complicated RNN models on both prediction quality and time efficiency. It achieves the best test accuracy among all sentence encoding methods and improves the most recent best result by 1.02% on the Stanford Natural Language Inference (SNLI) dataset, and shows state-of-the-art test accuracy on the Stanford Sentiment Treebank (SST), Multi-Genre natural language inference (MultiNLI), Sentences Involving Compositional Knowledge (SICK), Customer Review, MPQA, TREC question-type classification and Subjectivity (SUBJ) datasets.

北京阿比特科技有限公司