3D object detection plays a pivotal role in many applications, most notably autonomous driving and robotics. These applications are commonly deployed on edge devices to promptly interact with the environment, and often require near real-time response. With limited computation power, it is challenging to execute 3D detection on the edge using highly complex neural networks. Common approaches such as offloading to the cloud induce significant latency overheads due to the large amount of point cloud data during transmission. To resolve the tension between wimpy edge devices and compute-intensive inference workloads, we explore the possibility of empowering fast 2D detection to extrapolate 3D bounding boxes. To this end, we present Moby, a novel system that demonstrates the feasibility and potential of our approach. We design a transformation pipeline for Moby that generates 3D bounding boxes efficiently and accurately based on 2D detection results without running 3D detectors. Further, we devise a frame offloading scheduler that decides when to launch the 3D detector judiciously in the cloud to avoid the errors from accumulating. Extensive evaluations on NVIDIA Jetson TX2 with real-world autonomous driving datasets demonstrate that Moby offers up to 91.9% latency improvement with modest accuracy loss over state of the art.
Deep Learning (DL) models tend to perform poorly when the data comes from a distribution different from the training one. In critical applications such as medical imaging, out-of-distribution (OOD) detection helps to identify such data samples, increasing the model's reliability. Recent works have developed DL-based OOD detection that achieves promising results on 2D medical images. However, scaling most of these approaches on 3D images is computationally intractable. Furthermore, the current 3D solutions struggle to achieve acceptable results in detecting even synthetic OOD samples. Such limited performance might indicate that DL often inefficiently embeds large volumetric images. We argue that using the intensity histogram of the original CT or MRI scan as embedding is descriptive enough to run OOD detection. Therefore, we propose a histogram-based method that requires no DL and achieves almost perfect results in this domain. Our proposal is supported two-fold. We evaluate the performance on the publicly available datasets, where our method scores 1.0 AUROC in most setups. And we score second in the Medical Out-of-Distribution challenge without fine-tuning and exploiting task-specific knowledge. Carefully discussing the limitations, we conclude that our method solves the sample-level OOD detection on 3D medical images in the current setting.
Supervised learning typically focuses on learning transferable representations from training examples annotated by humans. While rich annotations (like soft labels) carry more information than sparse annotations (like hard labels), they are also more expensive to collect. For example, while hard labels only provide information about the closest class an object belongs to (e.g., "this is a dog"), soft labels provide information about the object's relationship with multiple classes (e.g., "this is most likely a dog, but it could also be a wolf or a coyote"). We use information theory to compare how a number of commonly-used supervision signals contribute to representation-learning performance, as well as how their capacity is affected by factors such as the number of labels, classes, dimensions, and noise. Our framework provides theoretical justification for using hard labels in the big-data regime, but richer supervision signals for few-shot learning and out-of-distribution generalization. We validate these results empirically in a series of experiments with over 1 million crowdsourced image annotations and conduct a cost-benefit analysis to establish a tradeoff curve that enables users to optimize the cost of supervising representation learning on their own datasets.
This paper proposes a novel Self-Supervised Intrusion Detection (SSID) framework, which enables a fully online Machine Learning (ML) based Intrusion Detection System (IDS) that requires no human intervention or prior off-line learning. The proposed framework analyzes and labels incoming traffic packets based only on the decisions of the IDS itself using an Auto-Associative Deep Random Neural Network, and on an online estimate of its statistically measured trustworthiness. The SSID framework enables IDS to adapt rapidly to time-varying characteristics of the network traffic, and eliminates the need for offline data collection. This approach avoids human errors in data labeling, and human labor and computational costs of model training and data collection. The approach is experimentally evaluated on public datasets and compared with well-known ML models, showing that this SSID framework is very useful and advantageous as an accurate and online learning ML-based IDS for IoT systems.
Cloud-native architectures are often based on microservices and combine different aspects that aim to leverage the capabilities of cloud platforms for software development. Cloud-native architectural characteristics like patterns and best practices aim to design, develop, deploy, and operate such systems efficiently with minimal time and effort. However, architects and developers are faced with the challenge of applying such characteristics in a targeted manner to improve selected quality attributes. Hence, we aim to investigate relationships, or more specifically impacts, between architectural characteristics of cloud-native applications, and quality aspects. The architectural characteristics in consideration are based on our recently proposed quality model for cloud-native software architectures. To validate its elements and revise this literature-based quality model, we conducted a questionnaire-based survey among 42 software professionals. While the survey results reinforce the quality model to a fair extent, they also indicate parts requiring a revision. Thus, as an additional contribution, we present an updated version of the quality model incorporating the survey results. Practitioners will benefit from our work when designing and developing cloud-native applications in a quality-oriented way. Researchers will moreover profit from our specifically developed questionnaire-based survey tool, which allows surveying complex structures like a hierarchical quality model.
Exoplanet detection by direct imaging is a difficult task: the faint signals from the objects of interest are buried under a spatially structured nuisance component induced by the host star. The exoplanet signals can only be identified when combining several observations with dedicated detection algorithms. In contrast to most of existing methods, we propose to learn a model of the spatial, temporal and spectral characteristics of the nuisance, directly from the observations. In a pre-processing step, a statistical model of their correlations is built locally, and the data are centered and whitened to improve both their stationarity and signal-to-noise ratio (SNR). A convolutional neural network (CNN) is then trained in a supervised fashion to detect the residual signature of synthetic sources in the pre-processed images. Our method leads to a better trade-off between precision and recall than standard approaches in the field. It also outperforms a state-of-the-art algorithm based solely on a statistical framework. Besides, the exploitation of the spectral diversity improves the performance compared to a similar model built solely from spatio-temporal data.
Deep neural networks (DNNs) have succeeded in many different perception tasks, e.g., computer vision, natural language processing, reinforcement learning, etc. The high-performed DNNs heavily rely on intensive resource consumption. For example, training a DNN requires high dynamic memory, a large-scale dataset, and a large number of computations (a long training time); even inference with a DNN also demands a large amount of static storage, computations (a long inference time), and energy. Therefore, state-of-the-art DNNs are often deployed on a cloud server with a large number of super-computers, a high-bandwidth communication bus, a shared storage infrastructure, and a high power supplement. Recently, some new emerging intelligent applications, e.g., AR/VR, mobile assistants, Internet of Things, require us to deploy DNNs on resource-constrained edge devices. Compare to a cloud server, edge devices often have a rather small amount of resources. To deploy DNNs on edge devices, we need to reduce the size of DNNs, i.e., we target a better trade-off between resource consumption and model accuracy. In this dissertation, we studied four edge intelligence scenarios, i.e., Inference on Edge Devices, Adaptation on Edge Devices, Learning on Edge Devices, and Edge-Server Systems, and developed different methodologies to enable deep learning in each scenario. Since current DNNs are often over-parameterized, our goal is to find and reduce the redundancy of the DNNs in each scenario.
In recent years, larger and deeper models are springing up and continuously pushing state-of-the-art (SOTA) results across various fields like natural language processing (NLP) and computer vision (CV). However, despite promising results, it needs to be noted that the computations required by SOTA models have been increased at an exponential rate. Massive computations not only have a surprisingly large carbon footprint but also have negative effects on research inclusiveness and deployment on real-world applications. Green deep learning is an increasingly hot research field that appeals to researchers to pay attention to energy usage and carbon emission during model training and inference. The target is to yield novel results with lightweight and efficient technologies. Many technologies can be used to achieve this goal, like model compression and knowledge distillation. This paper focuses on presenting a systematic review of the development of Green deep learning technologies. We classify these approaches into four categories: (1) compact networks, (2) energy-efficient training strategies, (3) energy-efficient inference approaches, and (4) efficient data usage. For each category, we discuss the progress that has been achieved and the unresolved challenges.
Machine learning is completely changing the trends in the fashion industry. From big to small every brand is using machine learning techniques in order to improve their revenue, increase customers and stay ahead of the trend. People are into fashion and they want to know what looks best and how they can improve their style and elevate their personality. Using Deep learning technology and infusing it with Computer Vision techniques one can do so by utilizing Brain-inspired Deep Networks, and engaging into Neuroaesthetics, working with GANs and Training them, playing around with Unstructured Data,and infusing the transformer architecture are just some highlights which can be touched with the Fashion domain. Its all about designing a system that can tell us information regarding the fashion aspect that can come in handy with the ever growing demand. Personalization is a big factor that impacts the spending choices of customers.The survey also shows remarkable approaches that encroach the subject of achieving that by divulging deep into how visual data can be interpreted and leveraged into different models and approaches. Aesthetics play a vital role in clothing recommendation as users' decision depends largely on whether the clothing is in line with their aesthetics, however the conventional image features cannot portray this directly. For that the survey also highlights remarkable models like tensor factorization model, conditional random field model among others to cater the need to acknowledge aesthetics as an important factor in Apparel recommendation.These AI inspired deep models can pinpoint exactly which certain style resonates best with their customers and they can have an understanding of how the new designs will set in with the community. With AI and machine learning your businesses can stay ahead of the fashion trends.
Recent advances in sensor and mobile devices have enabled an unprecedented increase in the availability and collection of urban trajectory data, thus increasing the demand for more efficient ways to manage and analyze the data being produced. In this survey, we comprehensively review recent research trends in trajectory data management, ranging from trajectory pre-processing, storage, common trajectory analytic tools, such as querying spatial-only and spatial-textual trajectory data, and trajectory clustering. We also explore four closely related analytical tasks commonly used with trajectory data in interactive or real-time processing. Deep trajectory learning is also reviewed for the first time. Finally, we outline the essential qualities that a trajectory management system should possess in order to maximize flexibility.
Breast cancer remains a global challenge, causing over 1 million deaths globally in 2018. To achieve earlier breast cancer detection, screening x-ray mammography is recommended by health organizations worldwide and has been estimated to decrease breast cancer mortality by 20-40%. Nevertheless, significant false positive and false negative rates, as well as high interpretation costs, leave opportunities for improving quality and access. To address these limitations, there has been much recent interest in applying deep learning to mammography; however, obtaining large amounts of annotated data poses a challenge for training deep learning models for this purpose, as does ensuring generalization beyond the populations represented in the training dataset. Here, we present an annotation-efficient deep learning approach that 1) achieves state-of-the-art performance in mammogram classification, 2) successfully extends to digital breast tomosynthesis (DBT; "3D mammography"), 3) detects cancers in clinically-negative prior mammograms of cancer patients, 4) generalizes well to a population with low screening rates, and 5) outperforms five-out-of-five full-time breast imaging specialists by improving absolute sensitivity by an average of 14%. Our results demonstrate promise towards software that can improve the accuracy of and access to screening mammography worldwide.