Chiplet-based systems have gained significant attention in recent years due to their low cost and competitive performance. As the complexity and compactness of a chiplet-based system increase, careful consideration must be given to microbump assignments, interconnect delays, and thermal limitations during the floorplanning stage. This paper introduces RLPlanner, an efficient early-stage floorplanning tool for chiplet-based systems with a novel fast thermal evaluation method. RLPlanner employs advanced reinforcement learning to jointly minimize total wirelength and temperature. To alleviate the time-consuming thermal calculations, RLPlanner incorporates the developed fast thermal evaluation method to expedite the iterations and optimizations. Comprehensive experiments demonstrate that our proposed fast thermal evaluation method achieves a mean absolute error (MAE) of 0.25 K and delivers over 120x speed-up compared to the open-source thermal solver HotSpot. When integrated with our fast thermal evaluation method, RLPlanner achieves an average improvement of 20.28\% in minimizing the target objective (a combination of wirelength and temperature), within a similar running time, compared to the classic simulated annealing method with HotSpot.
We consider the task of identifying and estimating a parameter of interest in settings where data is missing not at random (MNAR). In general, such parameters are not identified without strong assumptions on the missing data model. In this paper, we take an alternative approach and introduce a method inspired by data fusion, where information in an MNAR dataset is augmented by information in an auxiliary dataset subject to missingness at random (MAR). We show that even if the parameter of interest cannot be identified given either dataset alone, it can be identified given pooled data, under two complementary sets of assumptions. We derive an inverse probability weighted (IPW) estimator for identified parameters, and evaluate the performance of our estimation strategies via simulation studies, and a data application.
With recent advances in artificial intelligence (AI) and robotics, unmanned vehicle swarms have received great attention from both academia and industry due to their potential to provide services that are difficult and dangerous to perform by humans. However, learning and coordinating movements and actions for a large number of unmanned vehicles in complex and dynamic environments introduce significant challenges to conventional AI methods. Generative AI (GAI), with its capabilities in complex data feature extraction, transformation, and enhancement, offers great potential in solving these challenges of unmanned vehicle swarms. For that, this paper aims to provide a comprehensive survey on applications, challenges, and opportunities of GAI in unmanned vehicle swarms. Specifically, we first present an overview of unmanned vehicles and unmanned vehicle swarms as well as their use cases and existing issues. Then, an in-depth background of various GAI techniques together with their capabilities in enhancing unmanned vehicle swarms are provided. After that, we present a comprehensive review on the applications and challenges of GAI in unmanned vehicle swarms with various insights and discussions. Finally, we highlight open issues of GAI in unmanned vehicle swarms and discuss potential research directions.
Fairness in artificial intelligence models has gained significantly more attention in recent years, especially in the area of medicine, as fairness in medical models is critical to people's well-being and lives. High-quality medical fairness datasets are needed to promote fairness learning research. Existing medical fairness datasets are all for classification tasks, and no fairness datasets are available for medical segmentation, while medical segmentation is an equally important clinical task as classifications, which can provide detailed spatial information on organ abnormalities ready to be assessed by clinicians. In this paper, we propose the first fairness dataset for medical segmentation named Harvard-FairSeg with 10,000 subject samples. In addition, we propose a fair error-bound scaling approach to reweight the loss function with the upper error-bound in each identity group, using the segment anything model (SAM). We anticipate that the segmentation performance equity can be improved by explicitly tackling the hard cases with high training errors in each identity group. To facilitate fair comparisons, we utilize a novel equity-scaled segmentation performance metric to compare segmentation metrics in the context of fairness, such as the equity-scaled Dice coefficient. Through comprehensive experiments, we demonstrate that our fair error-bound scaling approach either has superior or comparable fairness performance to the state-of-the-art fairness learning models. The dataset and code are publicly accessible via //ophai.hms.harvard.edu/harvard-fairseg10k.
Soft electrohydraulic actuators known as HASEL actuators have attracted widespread research interest due to their outstanding dynamic performance and high output power. However, the displacement of electrohydraulic actuators usually declines with time under constant DC voltage, which hampers its prospective application. A mathematical model is firstly established to not only explain the decrease in displacement under DC voltage but also predict the relatively stable displacement with oscillation under AC square wave voltage. The mathematical model is validated since the actual displacement confirms the trend observed by our model. To smooth the displacement oscillation introduced by AC voltage, a serial elastic component is incorporated to form a SE-HASEL actuator. A feedback control with a proportion-integration algorithm enables the SE-HASEL actuator to eliminate the obstinate displacement hysteresis. Our results revealed that, through our methodology, the SE-HASEL actuator can give stable and smooth displacement and is capable of absorbing external impact disturbance simultaneously. A rotary joint based on the SE-HASEL actuator is developed to reflect its possibility to generate a common rotary motion for wide robotic applications. More importantly, this paper also proposes a highly accurate needle biopsy robot that can be utilized in MRI-guide surgical procedures. Overall, we have achieved AC-driven series elastic electrohydraulic actuators that can exhibit stable and smooth displacement output.
Generative AI models have revolutionized various fields by enabling the creation of realistic and diverse data samples. Among these models, diffusion models have emerged as a powerful approach for generating high-quality images, text, and audio. This survey paper provides a comprehensive overview of generative AI diffusion and legacy models, focusing on their underlying techniques, applications across different domains, and their challenges. We delve into the theoretical foundations of diffusion models, including concepts such as denoising diffusion probabilistic models (DDPM) and score-based generative modeling. Furthermore, we explore the diverse applications of these models in text-to-image, image inpainting, and image super-resolution, along with others, showcasing their potential in creative tasks and data augmentation. By synthesizing existing research and highlighting critical advancements in this field, this survey aims to provide researchers and practitioners with a comprehensive understanding of generative AI diffusion and legacy models and inspire future innovations in this exciting area of artificial intelligence.
In recent years, the growing demand to process large graphs and sparse datasets has led to increased research efforts to develop hardware- and software-based architectural solutions to accelerate them. While some of these approaches achieve scalable parallelization with up to thousands of cores, adaptation of these proposals by the industry remained slow. To help solve this dissonance, we identified a set of questions and considerations that current research has not considered deeply. Starting from a tile-based architecture, we put forward a Distributed Chiplet-based Reconfigurable Architecture (DCRA) for irregular applications that carefully consider fabrication constraints that made prior work either hard or costly to implement or too rigid to be applied. We identify and study pre-silicon, package-time and compile-time configurations that help optimize DCRA for different deployments and target metrics. To enable that, we propose a practical path for manufacturing chip packages by composing variable numbers of DCRA and memory dies, with a software-configurable Torus network to connect them. We evaluate six applications and four datasets, with several configurations and memory technologies, to provide a detailed analysis of the performance, power, and cost of DCRA as a compute node for scale-out sparse data processing. Finally, we present our findings and discuss how DCRA's framework for design exploration can help guide architects to build scalable and cost-efficient systems for irregular applications.
Cryptocurrencies and blockchain technology provide an innovative model for reshaping digital services. Driven by the movement toward Web 3.0, recent systems started to provide distributed services, such as computation outsourcing or file storage, on top of the currency exchange medium. By allowing anyone to join and collect cryptocurrency payments for serving others, these systems create decentralized markets for trading digital resources. Yet, there is still a big gap between the promise of these markets and their practical viability. Existing initiatives are still early-stage and have already encountered security and efficiency obstacles. At the same time, existing work around promising ideas, specifically sidechains, fall short in exploiting their full potential in addressing these problems. To bridge this gap, we propose chainBoost, a secure performance booster for decentralized resource markets. It expedites service related operations, reduces the blockchain size, and supports flexible service-payment exchange modalities at low overhead. At its core, chainBoost employs a sidechain, that has a (security and semantic) mutual-dependence with the mainchain, to which the system offloads heavy/frequent operations. To enable it, we develop a novel sidechain architecture composed of temporary and permanent blocks, a block suppression mechanism to prune the sidechain, a syncing protocol to permit arbitrary data exchange between the two chains, and an autorecovery protocol to support robustness and resilience. We analyze the security of chainBoost, and implement a proof-of-concept prototype for a distributed file storage market as a use case. For a market handling around 2000 transactions per round, our experiments show up to 11x improvement in throughput and 94\% reduction in confirmation time. They also show that chainBoost can reduce the main blockchain size by around 90%.
The capability to jointly process multi-modal information is becoming an essential task. However, the limited number of paired multi-modal data and the large computational requirements in multi-modal learning hinder the development. We propose a novel Tri-Modal Translation (TMT) model that translates between arbitrary modalities spanning speech, image, and text. We introduce a novel viewpoint, where we interpret different modalities as different languages, and treat multi-modal translation as a well-established machine translation problem. To this end, we tokenize speech and image data into discrete tokens, which provide a unified interface across modalities and significantly decrease the computational cost. In the proposed TMT, a multi-modal encoder-decoder conducts the core translation, whereas modality-specific processing is conducted only within the tokenization and detokenization stages. We evaluate the proposed TMT on all six modality translation tasks. TMT outperforms single model counterparts consistently, demonstrating that unifying tasks is beneficial not only for practicality but also for performance.
Aspect-Based Sentiment Analysis (ABSA) stands as a crucial task in predicting the sentiment polarity associated with identified aspects within text. However, a notable challenge in ABSA lies in precisely determining the aspects' boundaries (start and end indices), especially for long ones, due to users' colloquial expressions. We propose DiffusionABSA, a novel diffusion model tailored for ABSA, which extracts the aspects progressively step by step. Particularly, DiffusionABSA gradually adds noise to the aspect terms in the training process, subsequently learning a denoising process that progressively restores these terms in a reverse manner. To estimate the boundaries, we design a denoising neural network enhanced by a syntax-aware temporal attention mechanism to chronologically capture the interplay between aspects and surrounding text. Empirical evaluations conducted on eight benchmark datasets underscore the compelling advantages offered by DiffusionABSA when compared against robust baseline models. Our code is publicly available at //github.com/Qlb6x/DiffusionABSA.
Graph neural networks (GNNs) have demonstrated a significant boost in prediction performance on graph data. At the same time, the predictions made by these models are often hard to interpret. In that regard, many efforts have been made to explain the prediction mechanisms of these models from perspectives such as GNNExplainer, XGNN and PGExplainer. Although such works present systematic frameworks to interpret GNNs, a holistic review for explainable GNNs is unavailable. In this survey, we present a comprehensive review of explainability techniques developed for GNNs. We focus on explainable graph neural networks and categorize them based on the use of explainable methods. We further provide the common performance metrics for GNNs explanations and point out several future research directions.