Spreadsheets offer a supremely successful and intuitive means of processing and exchanging numerical content. Its intuitive ad-hoc nature makes it hugely popular for use in diverse areas including business and engineering, yet these very same characteristics make it extraordinarily error-prone; many would question whether it is suitable for serious analysis or modelling tasks. A previous EuSpRIG paper examined the role of Names in increasing solution transparency and providing a readable notation to forge links with the problem domain. Extensive use was made of CSE array formulas, but it is acknowledged that their use makes spreadsheet development a distinctly cumbersome task. Since that time, the new dynamic arrays have been introduced and array calculation is now the default mode of operation for Excel. This paper examines the thesis that their adoption within a more professional development environment could replace traditional techniques where solution integrity is important. A major advantage of fully dynamic models is that they require less manual intervention to keep them updated and so have the potential to reduce the attendant errors and risk.
Parallel self-assembly is an efficient approach to accelerate the assembly process for modular robots. However, these approaches cannot accommodate complicated environments with obstacles, which restricts their applications. This paper considers the surrounding stationary obstacles and proposes a parallel self-assembly planning algorithm named SAPOA. With this algorithm, modular robots can avoid immovable obstacles when performing docking actions, which adapts the parallel self-assembly process to complex scenes. To validate the efficiency and scalability, we have designed 25 distinct grid maps with different obstacle configurations to simulate the algorithm. From the results compared to the existing parallel self-assembly algorithms, our algorithm shows a significantly higher success rate, which is more than 80%. For verification in real-world applications, a multi-agent hardware testbed system is developed. The algorithm is successfully deployed on four omnidirectional unmanned surface vehicles, CuBoats. The navigation strategy that translates the discrete planner, SAPOA, to the continuous controller on the CuBoats is presented. The algorithm's feasibility and flexibility were demonstrated through successful self-assembly experiments on 5 maps with varying obstacle configurations.
Transformers have demonstrated their effectiveness in image restoration tasks. Existing Transformer architectures typically comprise two essential components: multi-head self-attention and feed-forward network (FFN). The former captures long-range pixel dependencies, while the latter enables the model to learn complex patterns and relationships in the data. Previous studies have demonstrated that FFNs are key-value memories \cite{geva2020transformer}, which are vital in modern Transformer architectures. In this paper, we conduct an empirical study to explore the potential of attention mechanisms without using FFN and provide novel structures to demonstrate that removing FFN is flexible for image restoration. Specifically, we propose Continuous Scaling Attention (\textbf{CSAttn}), a method that computes attention continuously in three stages without using FFN. To achieve competitive performance, we propose a series of key components within the attention. Our designs provide a closer look at the attention mechanism and reveal that some simple operations can significantly affect the model performance. We apply our \textbf{CSAttn} to several image restoration tasks and show that our model can outperform CNN-based and Transformer-based image restoration approaches.
Transformers pretrained on diverse tasks exhibit remarkable in-context learning (ICL) capabilities, enabling them to solve unseen tasks solely based on input contexts without adjusting model parameters. In this paper, we study ICL in one of its simplest setups: pretraining a linearly parameterized single-layer linear attention model for linear regression with a Gaussian prior. We establish a statistical task complexity bound for the attention model pretraining, showing that effective pretraining only requires a small number of independent tasks. Furthermore, we prove that the pretrained model closely matches the Bayes optimal algorithm, i.e., optimally tuned ridge regression, by achieving nearly Bayes optimal risk on unseen tasks under a fixed context length. These theoretical findings complement prior experimental research and shed light on the statistical foundations of ICL.
We prove impossibility results for adaptivity in non-smooth stochastic convex optimization. Given a set of problem parameters we wish to adapt to, we define a "price of adaptivity" (PoA) that, roughly speaking, measures the multiplicative increase in suboptimality due to uncertainty in these parameters. When the initial distance to the optimum is unknown but a gradient norm bound is known, we show that the PoA is at least logarithmic for expected suboptimality, and double-logarithmic for median suboptimality. When there is uncertainty in both distance and gradient norm, we show that the PoA must be polynomial in the level of uncertainty. Our lower bounds nearly match existing upper bounds, and establish that there is no parameter-free lunch.
Embeddings have become a pivotal means to represent complex, multi-faceted information about entities, concepts, and relationships in a condensed and useful format. Nevertheless, they often preclude direct interpretation. While downstream tasks make use of these compressed representations, meaningful interpretation usually requires visualization using dimensionality reduction or specialized machine learning interpretability methods. This paper addresses the challenge of making such embeddings more interpretable and broadly useful, by employing Large Language Models (LLMs) to directly interact with embeddings -- transforming abstract vectors into understandable narratives. By injecting embeddings into LLMs, we enable querying and exploration of complex embedding data. We demonstrate our approach on a variety of diverse tasks, including: enhancing concept activation vectors (CAVs), communicating novel embedded entities, and decoding user preferences in recommender systems. Our work couples the immense information potential of embeddings with the interpretative power of LLMs.
The exponential growth in scale and relevance of social networks enable them to provide expansive insights. Predicting missing links in social networks efficiently can help in various modern-day business applications ranging from generating recommendations to influence analysis. Several categories of solutions exist for the same. Here, we explore various feature extraction techniques to generate representations of nodes and edges in a social network that allow us to predict missing links. We compare the results of using ten feature extraction techniques categorized across Structural embeddings, Neighborhood-based embeddings, Graph Neural Networks, and Graph Heuristics, followed by modeling with ensemble classifiers and custom Neural Networks. Further, we propose combining heuristic-based features and learned representations that demonstrate improved performance for the link prediction task on social network datasets. Using this method to generate accurate recommendations for many applications is a matter of further study that appears very promising. The code for all the experiments has been made public.
Despite the recent success of automatic metrics for assessing translation quality, their application in evaluating the quality of machine-translated chats has been limited. Unlike more structured texts like news, chat conversations are often unstructured, short, and heavily reliant on contextual information. This poses questions about the reliability of existing sentence-level metrics in this domain as well as the role of context in assessing the translation quality. Motivated by this, we conduct a meta-evaluation of existing sentence-level automatic metrics, primarily designed for structured domains such as news, to assess the quality of machine-translated chats. We find that reference-free metrics lag behind reference-based ones, especially when evaluating translation quality in out-of-English settings. We then investigate how incorporating conversational contextual information in these metrics affects their performance. Our findings show that augmenting neural learned metrics with contextual information helps improve correlation with human judgments in the reference-free scenario and when evaluating translations in out-of-English settings. Finally, we propose a new evaluation metric, Context-MQM, that utilizes bilingual context with a large language model (LLM) and further validate that adding context helps even for LLM-based evaluation metrics.
Graph Neural Networks (GNNs) have shown promising results on a broad spectrum of applications. Most empirical studies of GNNs directly take the observed graph as input, assuming the observed structure perfectly depicts the accurate and complete relations between nodes. However, graphs in the real world are inevitably noisy or incomplete, which could even exacerbate the quality of graph representations. In this work, we propose a novel Variational Information Bottleneck guided Graph Structure Learning framework, namely VIB-GSL, in the perspective of information theory. VIB-GSL advances the Information Bottleneck (IB) principle for graph structure learning, providing a more elegant and universal framework for mining underlying task-relevant relations. VIB-GSL learns an informative and compressive graph structure to distill the actionable information for specific downstream tasks. VIB-GSL deduces a variational approximation for irregular graph data to form a tractable IB objective function, which facilitates training stability. Extensive experimental results demonstrate that the superior effectiveness and robustness of VIB-GSL.
Compared with cheap addition operation, multiplication operation is of much higher computation complexity. The widely-used convolutions in deep neural networks are exactly cross-correlation to measure the similarity between input feature and convolution filters, which involves massive multiplications between float values. In this paper, we present adder networks (AdderNets) to trade these massive multiplications in deep neural networks, especially convolutional neural networks (CNNs), for much cheaper additions to reduce computation costs. In AdderNets, we take the $\ell_1$-norm distance between filters and input feature as the output response. The influence of this new similarity measure on the optimization of neural network have been thoroughly analyzed. To achieve a better performance, we develop a special back-propagation approach for AdderNets by investigating the full-precision gradient. We then propose an adaptive learning rate strategy to enhance the training procedure of AdderNets according to the magnitude of each neuron's gradient. As a result, the proposed AdderNets can achieve 74.9% Top-1 accuracy 91.7% Top-5 accuracy using ResNet-50 on the ImageNet dataset without any multiplication in convolution layer.
Visual Question Answering (VQA) models have struggled with counting objects in natural images so far. We identify a fundamental problem due to soft attention in these models as a cause. To circumvent this problem, we propose a neural network component that allows robust counting from object proposals. Experiments on a toy task show the effectiveness of this component and we obtain state-of-the-art accuracy on the number category of the VQA v2 dataset without negatively affecting other categories, even outperforming ensemble models with our single model. On a difficult balanced pair metric, the component gives a substantial improvement in counting over a strong baseline by 6.6%.