亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Traffic accident analysis is pivotal for enhancing public safety and developing road regulations. Traditional approaches, although widely used, are often constrained by manual analysis processes, subjective decisions, uni-modal outputs, as well as privacy issues related to sensitive data. This paper introduces the idea of AccidentGPT, a foundation model of traffic accident analysis, which incorporates multi-modal input data to automatically reconstruct the accident process video with dynamics details, and furthermore provide multi-task analysis with multi-modal outputs. The design of the AccidentGPT is empowered with a multi-modality prompt with feedback for task-oriented adaptability, a hybrid training schema to leverage labelled and unlabelled data, and a edge-cloud split configuration for data privacy. To fully realize the functionalities of this model, we proposes several research opportunities. This paper serves as the stepping stone to fill the gaps in traditional approaches of traffic accident analysis and attract the research community attention for automatic, objective, and privacy-preserving traffic accident analysis.

相關內容

With the increasing reliance of smart grids on correctly functioning SCADA systems and their vulnerability to cyberattacks, there is a pressing need for effective security measures. SCADA systems are prone to cyberattacks, posing risks to critical infrastructure. As there is a lack of host-based intrusion detection systems specifically designed for the stable nature of SCADA systems, the objective of this work is to propose a host-based intrusion detection system tailored for SCADA systems in smart grids. The proposed system utilizes USB device identification, flagging, and process memory scanning to monitor and detect anomalies in SCADA systems, providing enhanced security measures. Evaluation in three different scenarios demonstrates the tool's effectiveness in detecting and disabling malware. The proposed approach effectively identifies potential threats and enhances the security of SCADA systems in smart grids, providing a promising solution to protect against cyberattacks.

Recent advancements in autonomous driving have relied on data-driven approaches, which are widely adopted but face challenges including dataset bias, overfitting, and uninterpretability. Drawing inspiration from the knowledge-driven nature of human driving, we explore the question of how to instill similar capabilities into autonomous driving systems and summarize a paradigm that integrates an interactive environment, a driver agent, as well as a memory component to address this question. Leveraging large language models (LLMs) with emergent abilities, we propose the DiLu framework, which combines a Reasoning and a Reflection module to enable the system to perform decision-making based on common-sense knowledge and evolve continuously. Extensive experiments prove DiLu's capability to accumulate experience and demonstrate a significant advantage in generalization ability over reinforcement learning-based methods. Moreover, DiLu is able to directly acquire experiences from real-world datasets which highlights its potential to be deployed on practical autonomous driving systems. To the best of our knowledge, we are the first to leverage knowledge-driven capability in decision-making for autonomous vehicles. Through the proposed DiLu framework, LLM is strengthened to apply knowledge and to reason causally in the autonomous driving domain. Project page: //pjlab-adg.github.io/DiLu/

Threat modeling has emerged as a key process for understanding relevant threats within businesses. However, understanding the importance of threat events is rarely driven by the business incorporating the system. Furthermore, prioritization of threat events often occurs based on abstract and qualitative scoring. While such scores enable prioritization, they do not allow the results to be easily interpreted by decision-makers. This can hinder downstream activities, such as discussing security investments and a security control's economic applicability. This article introduces QuantTM, an approach that incorporates views from operational and strategic business representatives to collect threat information during the threat modeling process to measure potential financial loss incurred by a specific threat event. It empowers the analysis of threats' impacts and the applicability of security controls, thus supporting the threat analysis and prioritization from an economic perspective. QuantTM comprises an overarching process for data collection and aggregation and a method for business impact analysis. The performance and feasibility of the QuantTM approach are demonstrated in a real-world case study conducted in a Swiss SME to analyze the impacts of threats and economic benefits of security controls. Secondly, it is shown that employing business impact analysis is feasible and that the supporting prototype exhibits great usability.

Constantly locating moving objects, i.e., geospatial tracking, is essential for autonomous building infrastructure. Accurate and robust geospatial tracking often leverages multimodal sensor fusion algorithms, which require large datasets with time-aligned, synchronized data from various sensor types. However, such datasets are not readily available. Hence, we propose GDTM, a nine-hour dataset for multimodal object tracking with distributed multimodal sensors and reconfigurable sensor node placements. Our dataset enables the exploration of several research problems, such as optimizing architectures for processing multimodal data, and investigating models' robustness to adverse sensing conditions and sensor placement variances. A GitHub repository containing the code, sample data, and checkpoints of this work is available at //github.com/nesl/GDTM.

Deep neural networks (DNNs) have proven to be effective models for accurate Memory Access Prediction (MAP), a critical task in mitigating memory latency through data prefetching. However, existing DNN-based MAP models suffer from the challenges such as significant physical storage space and poor inference latency, primarily due to their large number of parameters. These limitations render them impractical for deployment in real-world scenarios. In this paper, we propose PaCKD, a Pattern-Clustered Knowledge Distillation approach to compress MAP models while maintaining the prediction performance. The PaCKD approach encompasses three steps: clustering memory access sequences into distinct partitions involving similar patterns, training large pattern-specific teacher models for memory access prediction for each partition, and training a single lightweight student model by distilling the knowledge from the trained pattern-specific teachers. We evaluate our approach on LSTM, MLP-Mixer, and ResNet models, as they exhibit diverse structures and are widely used for image classification tasks in order to test their effectiveness in four widely used graph applications. Compared to the teacher models with 5.406M parameters and an F1-score of 0.4626, our student models achieve a 552$\times$ model size compression while maintaining an F1-score of 0.4538 (with a 1.92% performance drop). Our approach yields an 8.70% higher result compared to student models trained with standard knowledge distillation and an 8.88% higher result compared to student models trained without any form of knowledge distillation.

Localizing the bronchoscope in real time is essential for ensuring intervention quality. However, most existing methods struggle to balance between speed and generalization. To address these challenges, we present BronchoTrack, an innovative real-time framework for accurate branch-level localization, encompassing lumen detection, tracking, and airway association.To achieve real-time performance, we employ a benchmark lightweight detector for efficient lumen detection. We are the first to introduce multi-object tracking to bronchoscopic localization, mitigating temporal confusion in lumen identification caused by rapid bronchoscope movement and complex airway structures. To ensure generalization across patient cases, we propose a training-free detection-airway association method based on a semantic airway graph that encodes the hierarchy of bronchial tree structures.Experiments on nine patient datasets demonstrate BronchoTrack's localization accuracy of 85.64 \%, while accessing up to the 4th generation of airways.Furthermore, we tested BronchoTrack in an in-vivo animal study using a porcine model, where it successfully localized the bronchoscope into the 8th generation airway.Experimental evaluation underscores BronchoTrack's real-time performance in both satisfying accuracy and generalization, demonstrating its potential for clinical applications.

Neural architecture-based recommender systems have achieved tremendous success in recent years. However, when dealing with highly sparse data, they still fall short of expectation. Self-supervised learning (SSL), as an emerging technique to learn with unlabeled data, recently has drawn considerable attention in many fields. There is also a growing body of research proceeding towards applying SSL to recommendation for mitigating the data sparsity issue. In this survey, a timely and systematical review of the research efforts on self-supervised recommendation (SSR) is presented. Specifically, we propose an exclusive definition of SSR, on top of which we build a comprehensive taxonomy to divide existing SSR methods into four categories: contrastive, generative, predictive, and hybrid. For each category, the narrative unfolds along its concept and formulation, the involved methods, and its pros and cons. Meanwhile, to facilitate the development and evaluation of SSR models, we release an open-source library SELFRec, which incorporates multiple benchmark datasets and evaluation metrics, and has implemented a number of state-of-the-art SSR models for empirical comparison. Finally, we shed light on the limitations in the current research and outline the future research directions.

With the capability of modeling bidirectional contexts, denoising autoencoding based pretraining like BERT achieves better performance than pretraining approaches based on autoregressive language modeling. However, relying on corrupting the input with masks, BERT neglects dependency between the masked positions and suffers from a pretrain-finetune discrepancy. In light of these pros and cons, we propose XLNet, a generalized autoregressive pretraining method that (1) enables learning bidirectional contexts by maximizing the expected likelihood over all permutations of the factorization order and (2) overcomes the limitations of BERT thanks to its autoregressive formulation. Furthermore, XLNet integrates ideas from Transformer-XL, the state-of-the-art autoregressive model, into pretraining. Empirically, XLNet outperforms BERT on 20 tasks, often by a large margin, and achieves state-of-the-art results on 18 tasks including question answering, natural language inference, sentiment analysis, and document ranking.

Sentiment analysis is a widely studied NLP task where the goal is to determine opinions, emotions, and evaluations of users towards a product, an entity or a service that they are reviewing. One of the biggest challenges for sentiment analysis is that it is highly language dependent. Word embeddings, sentiment lexicons, and even annotated data are language specific. Further, optimizing models for each language is very time consuming and labor intensive especially for recurrent neural network models. From a resource perspective, it is very challenging to collect data for different languages. In this paper, we look for an answer to the following research question: can a sentiment analysis model trained on a language be reused for sentiment analysis in other languages, Russian, Spanish, Turkish, and Dutch, where the data is more limited? Our goal is to build a single model in the language with the largest dataset available for the task, and reuse it for languages that have limited resources. For this purpose, we train a sentiment analysis model using recurrent neural networks with reviews in English. We then translate reviews in other languages and reuse this model to evaluate the sentiments. Experimental results show that our robust approach of single model trained on English reviews statistically significantly outperforms the baselines in several different languages.

Distant supervision can effectively label data for relation extraction, but suffers from the noise labeling problem. Recent works mainly perform soft bag-level noise reduction strategies to find the relatively better samples in a sentence bag, which is suboptimal compared with making a hard decision of false positive samples in sentence level. In this paper, we introduce an adversarial learning framework, which we named DSGAN, to learn a sentence-level true-positive generator. Inspired by Generative Adversarial Networks, we regard the positive samples generated by the generator as the negative samples to train the discriminator. The optimal generator is obtained until the discrimination ability of the discriminator has the greatest decline. We adopt the generator to filter distant supervision training dataset and redistribute the false positive instances into the negative set, in which way to provide a cleaned dataset for relation classification. The experimental results show that the proposed strategy significantly improves the performance of distant supervision relation extraction comparing to state-of-the-art systems.

北京阿比特科技有限公司