亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Governance protocols define the means for amending or changing smart contracts without any centralized authority. They distribute the decision-making power to every user of the smart contract: Users vote on accepting or rejecting every change. In this work, we review and characterize decentralized governance in practice, using Compound and Uniswap -- two widely used governance protocols -- as a case study. We reveal a high concentration of voting power in both Compound and Uniswap: 10 voters hold together 57.86% and 44.72% of the voting power, respectively. Although proposals to change or amend the protocol receive, on average, a substantial number of votes (i.e., 89.39%) in favor within the Compound protocol, they require fewer than three voters to obtain 50% or more votes. We show that voting on Compound proposals can be unfairly expensive for small token holders, and we discover voting coalitions that can further marginalize these users.

相關內容

Logging practices have been extensively investigated to assist developers in writing appropriate logging statements for documenting software behaviors. Although numerous automatic logging approaches have been proposed, their performance remains unsatisfactory due to the constraint of the single-method input, without informative programming context outside the method. Specifically, we identify three inherent limitations with single-method context: limited static scope of logging statements, inconsistent logging styles, and missing type information of logging variables. To tackle these limitations, we propose SCLogger, the first contextualized logging statement generation approach with inter-method static contexts. First, SCLogger extracts inter-method contexts with static analysis to construct the contextualized prompt for language models to generate a tentative logging statement. The contextualized prompt consists of an extended static scope and sampled similar methods, ordered by the chain-of-thought (COT) strategy. Second, SCLogger refines the access of logging variables by formulating a new refinement prompt for language models, which incorporates detailed type information of variables in the tentative logging statement. The evaluation results show that SCLogger surpasses the state-of-the-art approach by 8.7% in logging position accuracy, 32.1% in level accuracy, 19.6% in variable precision, and 138.4% in text BLEU-4 score. Furthermore, SCLogger consistently boosts the performance of logging statement generation across a range of large language models, thereby showcasing the generalizability of this approach.

The integration of a complex set of Electronic Design Automation (EDA) tools to enhance interoperability is a critical concern for circuit designers. Recent advancements in large language models (LLMs) have showcased their exceptional capabilities in natural language processing and comprehension, offering a novel approach to interfacing with EDA tools. This research paper introduces ChatEDA, an autonomous agent for EDA empowered by a large language model, AutoMage, complemented by EDA tools serving as executors. ChatEDA streamlines the design flow from the Register-Transfer Level (RTL) to the Graphic Data System Version II (GDSII) by effectively managing task planning, script generation, and task execution. Through comprehensive experimental evaluations, ChatEDA has demonstrated its proficiency in handling diverse requirements, and our fine-tuned AutoMage model has exhibited superior performance compared to GPT-4 and other similar LLMs.

Distribution shifts and adversarial examples are two major challenges for deploying machine learning models. While these challenges have been studied individually, their combination is an important topic that remains relatively under-explored. In this work, we study the problem of adversarial robustness under a common setting of distribution shift - unsupervised domain adaptation (UDA). Specifically, given a labeled source domain $D_S$ and an unlabeled target domain $D_T$ with related but different distributions, the goal is to obtain an adversarially robust model for $D_T$. The absence of target domain labels poses a unique challenge, as conventional adversarial robustness defenses cannot be directly applied to $D_T$. To address this challenge, we first establish a generalization bound for the adversarial target loss, which consists of (i) terms related to the loss on the data, and (ii) a measure of worst-case domain divergence. Motivated by this bound, we develop a novel unified defense framework called Divergence Aware adveRsarial Training (DART), which can be used in conjunction with a variety of standard UDA methods; e.g., DANN [Ganin and Lempitsky, 2015]. DART is applicable to general threat models, including the popular $\ell_p$-norm model, and does not require heuristic regularizers or architectural changes. We also release DomainRobust: a testbed for evaluating robustness of UDA models to adversarial attacks. DomainRobust consists of 4 multi-domain benchmark datasets (with 46 source-target pairs) and 7 meta-algorithms with a total of 11 variants. Our large-scale experiments demonstrate that on average, DART significantly enhances model robustness on all benchmarks compared to the state of the art, while maintaining competitive standard accuracy. The relative improvement in robustness from DART reaches up to 29.2% on the source-target domain pairs considered.

Solely relying on test passing to evaluate Large Language Models (LLMs) for code synthesis may result in unfair assessment or promoting models with data leakage. As an alternative, we introduce CodeMind, a framework designed to gauge the code reasoning abilities of LLMs. CodeMind currently supports three code reasoning tasks: Independent Execution Reasoning (IER), Dependent Execution Reasoning (DER), and Specification Reasoning (SR). The first two evaluate models to predict the execution output of an arbitrary code or code the model could correctly synthesize. The third one evaluates the extent to which LLMs implement the specified expected behavior. Our extensive evaluation of nine LLMs across five benchmarks in two different programming languages using CodeMind shows that LLMs fairly understand control flow constructs and, in general, are capable of reasoning how inputs evolve to output, specifically for simple programs and the ones they can correctly synthesize. However, their performance drops for code with higher complexity, non-trivial logical and arithmetic operators, non-primitive types, and API calls. Furthermore, we observe that, while correlated, specification reasoning (essential for code synthesis) does not imply execution reasoning (essential for broader programming tasks such as testing and debugging): ranking LLMs based on test passing can be different compared to code reasoning.

We investigate a variation of the 3D registration problem, named multi-model 3D registration. In the multi-model registration problem, we are given two point clouds picturing a set of objects at different poses (and possibly including points belonging to the background) and we want to simultaneously reconstruct how all objects moved between the two point clouds. This setup generalizes standard 3D registration where one wants to reconstruct a single pose, e.g., the motion of the sensor picturing a static scene. Moreover, it provides a mathematically grounded formulation for relevant robotics applications, e.g., where a depth sensor onboard a robot perceives a dynamic scene and has the goal of estimating its own motion (from the static portion of the scene) while simultaneously recovering the motion of all dynamic objects. We assume a correspondence-based setup where we have putative matches between the two point clouds and consider the practical case where these correspondences are plagued with outliers. We then propose a simple approach based on Expectation-Maximization (EM) and establish theoretical conditions under which the EM approach converges to the ground truth. We evaluate the approach in simulated and real datasets ranging from table-top scenes to self-driving scenarios and demonstrate its effectiveness when combined with state-of-the-art scene flow methods to establish dense correspondences.

Practitioners conducting adaptive experiments often encounter two competing priorities: reducing the cost of experimentation by effectively assigning treatments during the experiment itself, and gathering information swiftly to conclude the experiment and implement a treatment across the population. Currently, the literature is divided, with studies on regret minimization addressing the former priority in isolation, and research on best-arm identification focusing solely on the latter. This paper proposes a unified model that accounts for both within-experiment performance and post-experiment outcomes. We then provide a sharp theory of optimal performance in large populations that unifies canonical results in the literature. This unification also uncovers novel insights. For example, the theory reveals that familiar algorithms, like the recently proposed top-two Thompson sampling algorithm, can be adapted to optimize a broad class of objectives by simply adjusting a single scalar parameter. In addition, the theory reveals that enormous reductions in experiment duration can sometimes be achieved with minimal impact on both within-experiment and post-experiment regret.

Susceptibility to misinformation describes the degree of belief in unverifiable claims, a latent aspect of individuals' mental processes that is not observable. Existing susceptibility studies heavily rely on self-reported beliefs, which can be subject to bias, expensive to collect, and challenging to scale for downstream applications. To address these limitations, in this work, we propose a computational approach to model users' latent susceptibility levels. As shown in previous research, susceptibility is influenced by various factors (e.g., demographic factors, political ideology), and directly influences people's reposting behavior on social media. To represent the underlying mental process, our susceptibility modeling incorporates these factors as inputs, guided by the supervision of people's sharing behavior. Using COVID-19 as a testbed domain, our experiments demonstrate a significant alignment between the susceptibility scores estimated by our computational modeling and human judgments, confirming the effectiveness of this latent modeling approach. Furthermore, we apply our model to annotate susceptibility scores on a large-scale dataset and analyze the relationships between susceptibility with various factors. Our analysis reveals that political leanings and psychological factors exhibit varying degrees of association with susceptibility to COVID-19 misinformation.

Face recognition technology has advanced significantly in recent years due largely to the availability of large and increasingly complex training datasets for use in deep learning models. These datasets, however, typically comprise images scraped from news sites or social media platforms and, therefore, have limited utility in more advanced security, forensics, and military applications. These applications require lower resolution, longer ranges, and elevated viewpoints. To meet these critical needs, we collected and curated the first and second subsets of a large multi-modal biometric dataset designed for use in the research and development (R&D) of biometric recognition technologies under extremely challenging conditions. Thus far, the dataset includes more than 350,000 still images and over 1,300 hours of video footage of approximately 1,000 subjects. To collect this data, we used Nikon DSLR cameras, a variety of commercial surveillance cameras, specialized long-rage R&D cameras, and Group 1 and Group 2 UAV platforms. The goal is to support the development of algorithms capable of accurately recognizing people at ranges up to 1,000 m and from high angles of elevation. These advances will include improvements to the state of the art in face recognition and will support new research in the area of whole-body recognition using methods based on gait and anthropometry. This paper describes methods used to collect and curate the dataset, and the dataset's characteristics at the current stage.

With the capability of modeling bidirectional contexts, denoising autoencoding based pretraining like BERT achieves better performance than pretraining approaches based on autoregressive language modeling. However, relying on corrupting the input with masks, BERT neglects dependency between the masked positions and suffers from a pretrain-finetune discrepancy. In light of these pros and cons, we propose XLNet, a generalized autoregressive pretraining method that (1) enables learning bidirectional contexts by maximizing the expected likelihood over all permutations of the factorization order and (2) overcomes the limitations of BERT thanks to its autoregressive formulation. Furthermore, XLNet integrates ideas from Transformer-XL, the state-of-the-art autoregressive model, into pretraining. Empirically, XLNet outperforms BERT on 20 tasks, often by a large margin, and achieves state-of-the-art results on 18 tasks including question answering, natural language inference, sentiment analysis, and document ranking.

Distant supervision can effectively label data for relation extraction, but suffers from the noise labeling problem. Recent works mainly perform soft bag-level noise reduction strategies to find the relatively better samples in a sentence bag, which is suboptimal compared with making a hard decision of false positive samples in sentence level. In this paper, we introduce an adversarial learning framework, which we named DSGAN, to learn a sentence-level true-positive generator. Inspired by Generative Adversarial Networks, we regard the positive samples generated by the generator as the negative samples to train the discriminator. The optimal generator is obtained until the discrimination ability of the discriminator has the greatest decline. We adopt the generator to filter distant supervision training dataset and redistribute the false positive instances into the negative set, in which way to provide a cleaned dataset for relation classification. The experimental results show that the proposed strategy significantly improves the performance of distant supervision relation extraction comparing to state-of-the-art systems.

北京阿比特科技有限公司