亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In the field of clinical medicine, computed tomography (CT) is an effective medical imaging modality for the diagnosis of various pathologies. Compared with X-ray images, CT images can provide more information, including multi-planar slices and three-dimensional structures for clinical diagnosis. However, CT imaging requires patients to be exposed to large doses of ionizing radiation for a long time, which may cause irreversible physical harm. In this paper, we propose an Uncertainty-aware MedNeRF (UMedNeRF) network based on generated radiation fields. The network can learn a continuous representation of CT projections from 2D X-ray images by obtaining the internal structure and depth information and using adaptive loss weights to ensure the quality of the generated images. Our model is trained on publicly available knee and chest datasets, and we show the results of CT projection rendering with a single X-ray and compare our method with other methods based on generated radiation fields.

相關內容

Medical tabular data, abundant in Electronic Health Records (EHRs), is a valuable resource for diverse medical tasks such as risk prediction. While deep learning approaches, particularly transformer-based models, have shown remarkable performance in tabular data prediction, there are still problems remained for existing work to be effectively adapted into medical domain, such as under-utilization of unstructured free-texts, limited exploration of textual information in structured data, and data corruption. To address these issues, we propose P-Transformer, a Prompt-based multimodal Transformer architecture designed specifically for medical tabular data. This framework consists two critical components: a tabular cell embedding generator and a tabular transformer. The former efficiently encodes diverse modalities from both structured and unstructured tabular data into a harmonized language semantic space with the help of pre-trained sentence encoder and medical prompts. The latter integrates cell representations to generate patient embeddings for various medical tasks. In comprehensive experiments on two real-world datasets for three medical tasks, P-Transformer demonstrated the improvements with 10.9%/11.0% on RMSE/MAE, 0.5%/2.2% on RMSE/MAE, and 1.6%/0.8% on BACC/AUROC compared to state-of-the-art (SOTA) baselines in predictability. Notably, the model exhibited strong resilience to data corruption in the structured data, particularly when the corruption rates are high.

In the field of medical sciences, reliable detection and classification of brain tumors from images remains a formidable challenge due to the rarity of tumors within the population of patients. Therefore, the ability to detect tumors in anomaly scenarios is paramount for ensuring timely interventions and improved patient outcomes. This study addresses the issue by leveraging deep learning (DL) techniques to detect and classify brain tumors in challenging situations. The curated data set from the National Brain Mapping Lab (NBML) comprises 81 patients, including 30 Tumor cases and 51 Normal cases. The detection and classification pipelines are separated into two consecutive tasks. The detection phase involved comprehensive data analysis and pre-processing to modify the number of image samples and the number of patients of each class to anomaly distribution (9 Normal per 1 Tumor) to comply with real world scenarios. Next, in addition to common evaluation metrics for the testing, we employed a novel performance evaluation method called Patient to Patient (PTP), focusing on the realistic evaluation of the model. In the detection phase, we fine-tuned a YOLOv8n detection model to detect the tumor region. Subsequent testing and evaluation yielded competitive performance both in Common Evaluation Metrics and PTP metrics. Furthermore, using the Data Efficient Image Transformer (DeiT) module, we distilled a Vision Transformer (ViT) model from a fine-tuned ResNet152 as a teacher in the classification phase. This approach demonstrates promising strides in reliable tumor detection and classification, offering potential advancements in tumor diagnosis for real-world medical imaging scenarios.

Graph neural networks (GNNs) and heterogeneous graph neural networks (HGNNs) are prominent techniques for homogeneous and heterogeneous graph representation learning, yet their performance in an end-to-end supervised framework greatly depends on the availability of task-specific supervision. To reduce the labeling cost, pre-training on self-supervised pretext tasks has become a popular paradigm,but there is often a gap between the pre-trained model and downstream tasks, stemming from the divergence in their objectives. To bridge the gap, prompt learning has risen as a promising direction especially in few-shot settings, without the need to fully fine-tune the pre-trained model. While there has been some early exploration of prompt-based learning on graphs, they primarily deal with homogeneous graphs, ignoring the heterogeneous graphs that are prevalent in downstream applications. In this paper, we propose HGPROMPT, a novel pre-training and prompting framework to unify not only pre-training and downstream tasks but also homogeneous and heterogeneous graphs via a dual-template design. Moreover, we propose dual-prompt in HGPROMPT to assist a downstream task in locating the most relevant prior to bridge the gaps caused by not only feature variations but also heterogeneity differences across tasks. Finally, we thoroughly evaluate and analyze HGPROMPT through extensive experiments on three public datasets.

Radiologists must utilize multiple modal images for tumor segmentation and diagnosis due to the limitations of medical imaging and the diversity of tumor signals. This leads to the development of multimodal learning in segmentation. However, the redundancy among modalities creates challenges for existing subtraction-based joint learning methods, such as misjudging the importance of modalities, ignoring specific modal information, and increasing cognitive load. These thorny issues ultimately decrease segmentation accuracy and increase the risk of overfitting. This paper presents the complementary information mutual learning (CIML) framework, which can mathematically model and address the negative impact of inter-modal redundant information. CIML adopts the idea of addition and removes inter-modal redundant information through inductive bias-driven task decomposition and message passing-based redundancy filtering. CIML first decomposes the multimodal segmentation task into multiple subtasks based on expert prior knowledge, minimizing the information dependence between modalities. Furthermore, CIML introduces a scheme in which each modality can extract information from other modalities additively through message passing. To achieve non-redundancy of extracted information, the redundant filtering is transformed into complementary information learning inspired by the variational information bottleneck. The complementary information learning procedure can be efficiently solved by variational inference and cross-modal spatial attention. Numerical results from the verification task and standard benchmarks indicate that CIML efficiently removes redundant information between modalities, outperforming SOTA methods regarding validation accuracy and segmentation effect.

This study investigates the complexity of regulatory affairs in the medical device industry, a critical factor influencing market access and patient care. Through qualitative research, we sought expert insights to understand the factors contributing to this complexity. The study involved semi-structured interviews with 28 professionals from medical device companies, specializing in various aspects of regulatory affairs. These interviews were analyzed using open coding and Natural Language Processing (NLP) techniques. The findings reveal key sources of complexity within the regulatory landscape, divided into five domains: (A) Regulatory language complexity, (B) Intricacies within the regulatory process, (C) Global-level complexities, (D) Database-related considerations, and (E) Product-level issues. The participants highlighted the need for strategies to streamline regulatory compliance, enhance interactions between regulatory bodies and industry players, and develop adaptable frameworks for rapid technological advancements. Emphasizing interdisciplinary collaboration and increased transparency, the study concludes that these elements are vital for establishing coherent and effective regulatory procedures in the medical device sector.

Multi-modal fusion is a fundamental task for the perception of an autonomous driving system, which has recently intrigued many researchers. However, achieving a rather good performance is not an easy task due to the noisy raw data, underutilized information, and the misalignment of multi-modal sensors. In this paper, we provide a literature review of the existing multi-modal-based methods for perception tasks in autonomous driving. Generally, we make a detailed analysis including over 50 papers leveraging perception sensors including LiDAR and camera trying to solve object detection and semantic segmentation tasks. Different from traditional fusion methodology for categorizing fusion models, we propose an innovative way that divides them into two major classes, four minor classes by a more reasonable taxonomy in the view of the fusion stage. Moreover, we dive deep into the current fusion methods, focusing on the remaining problems and open-up discussions on the potential research opportunities. In conclusion, what we expect to do in this paper is to present a new taxonomy of multi-modal fusion methods for the autonomous driving perception tasks and provoke thoughts of the fusion-based techniques in the future.

Conventionally, spatiotemporal modeling network and its complexity are the two most concentrated research topics in video action recognition. Existing state-of-the-art methods have achieved excellent accuracy regardless of the complexity meanwhile efficient spatiotemporal modeling solutions are slightly inferior in performance. In this paper, we attempt to acquire both efficiency and effectiveness simultaneously. First of all, besides traditionally treating H x W x T video frames as space-time signal (viewing from the Height-Width spatial plane), we propose to also model video from the other two Height-Time and Width-Time planes, to capture the dynamics of video thoroughly. Secondly, our model is designed based on 2D CNN backbones and model complexity is well kept in mind by design. Specifically, we introduce a novel multi-view fusion (MVF) module to exploit video dynamics using separable convolution for efficiency. It is a plug-and-play module and can be inserted into off-the-shelf 2D CNNs to form a simple yet effective model called MVFNet. Moreover, MVFNet can be thought of as a generalized video modeling framework and it can specialize to be existing methods such as C2D, SlowOnly, and TSM under different settings. Extensive experiments are conducted on popular benchmarks (i.e., Something-Something V1 & V2, Kinetics, UCF-101, and HMDB-51) to show its superiority. The proposed MVFNet can achieve state-of-the-art performance with 2D CNN's complexity.

Applying artificial intelligence techniques in medical imaging is one of the most promising areas in medicine. However, most of the recent success in this area highly relies on large amounts of carefully annotated data, whereas annotating medical images is a costly process. In this paper, we propose a novel method, called FocalMix, which, to the best of our knowledge, is the first to leverage recent advances in semi-supervised learning (SSL) for 3D medical image detection. We conducted extensive experiments on two widely used datasets for lung nodule detection, LUNA16 and NLST. Results show that our proposed SSL methods can achieve a substantial improvement of up to 17.3% over state-of-the-art supervised learning approaches with 400 unlabeled CT scans.

We propose a novel attention gate (AG) model for medical imaging that automatically learns to focus on target structures of varying shapes and sizes. Models trained with AGs implicitly learn to suppress irrelevant regions in an input image while highlighting salient features useful for a specific task. This enables us to eliminate the necessity of using explicit external tissue/organ localisation modules of cascaded convolutional neural networks (CNNs). AGs can be easily integrated into standard CNN architectures such as the U-Net model with minimal computational overhead while increasing the model sensitivity and prediction accuracy. The proposed Attention U-Net architecture is evaluated on two large CT abdominal datasets for multi-class image segmentation. Experimental results show that AGs consistently improve the prediction performance of U-Net across different datasets and training sizes while preserving computational efficiency. The code for the proposed architecture is publicly available.

We study the problem of named entity recognition (NER) from electronic medical records, which is one of the most fundamental and critical problems for medical text mining. Medical records which are written by clinicians from different specialties usually contain quite different terminologies and writing styles. The difference of specialties and the cost of human annotation makes it particularly difficult to train a universal medical NER system. In this paper, we propose a label-aware double transfer learning framework (La-DTL) for cross-specialty NER, so that a medical NER system designed for one specialty could be conveniently applied to another one with minimal annotation efforts. The transferability is guaranteed by two components: (i) we propose label-aware MMD for feature representation transfer, and (ii) we perform parameter transfer with a theoretical upper bound which is also label aware. We conduct extensive experiments on 12 cross-specialty NER tasks. The experimental results demonstrate that La-DTL provides consistent accuracy improvement over strong baselines. Besides, the promising experimental results on non-medical NER scenarios indicate that La-DTL is potential to be seamlessly adapted to a wide range of NER tasks.

北京阿比特科技有限公司